{"title":"The impact of the Hubble tension on the evidence for dynamical dark energy","authors":"Ye-Huang Pang, Xue Zhang, Qing-Guo Huang","doi":"10.1007/s11433-025-2713-8","DOIUrl":null,"url":null,"abstract":"<div><p>Recent findings from the Dark Energy Spectroscopic Instrument (DESI) Data Release 2 (DR2) favor a dynamical dark energy characterized by a phantom crossing feature. This result also implies a lower value of the Hubble constant, thereby intensifying the so-called Hubble tension. To alleviate the Hubble tension, we consider the early dark energy and explore its impact on the evidence for dynamical dark energy including the Hubble constant calibrated by the SH0ES collaboration. We find that incorporating SH0ES prior with CMB, DESI DR2 BAO and Pantheon Plus/Union3/DESY5 data reduces the preference to dynamical dark energy to 1.5<i>σ</i>/1.4<i>σ</i>/2.4<i>σ</i> level, respectively. Our results suggest a potential tension between the Hubble constant <i>H</i><sub>0</sub> of the SH0ES measurement and the phantom-to-quintessence transition in dark energy favored by DESI DR2 BAO data.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 8","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2713-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent findings from the Dark Energy Spectroscopic Instrument (DESI) Data Release 2 (DR2) favor a dynamical dark energy characterized by a phantom crossing feature. This result also implies a lower value of the Hubble constant, thereby intensifying the so-called Hubble tension. To alleviate the Hubble tension, we consider the early dark energy and explore its impact on the evidence for dynamical dark energy including the Hubble constant calibrated by the SH0ES collaboration. We find that incorporating SH0ES prior with CMB, DESI DR2 BAO and Pantheon Plus/Union3/DESY5 data reduces the preference to dynamical dark energy to 1.5σ/1.4σ/2.4σ level, respectively. Our results suggest a potential tension between the Hubble constant H0 of the SH0ES measurement and the phantom-to-quintessence transition in dark energy favored by DESI DR2 BAO data.
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.