Compactness of extremals for singular Moser–Trudinger functionals in high dimension

IF 0.9 3区 数学 Q1 MATHEMATICS
Xianfeng Su, Rulong Xie, Xiaomeng Li
{"title":"Compactness of extremals for singular Moser–Trudinger functionals in high dimension","authors":"Xianfeng Su,&nbsp;Rulong Xie,&nbsp;Xiaomeng Li","doi":"10.1007/s10231-024-01530-3","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this note is to study the compactness of extremals for the singular Moser-Trudinger inequality. More precisely, let <span>\\(\\Omega \\subset {\\mathbb {R}}^n\\)</span>, <span>\\(n\\ge 2\\)</span>, be a bounded open smooth domain and <span>\\(0\\in \\Omega \\)</span>, <span>\\(W^{1,n}_{0}(\\Omega )\\)</span> be the standard Sobolev space. For <span>\\(\\epsilon \\in [0,1)\\)</span>, Csato-Roy-Nguyen [J. Diff. Equ. 270:843–882, 2021] proved that the following singular Moser-Trudinger inequality </p><div><div><span>$$\\begin{aligned} \\sup _{u\\in W_0^{1,n}(\\Omega ),\\,\\int _{\\Omega }|\\nabla u|^ndx\\le 1}\\int _{\\Omega }\\frac{e^{\\alpha _n(1-\\epsilon )|u|^{\\frac{n}{n-1}}}-1 }{|x|^{n\\epsilon }}dx \\end{aligned}$$</span></div></div><p>can be achieved by a nonnegative function <span>\\(u_\\epsilon \\in W^{1,n}_{0}(\\Omega )\\)</span> with <span>\\(\\int _{\\Omega }|\\nabla u_\\epsilon |^n dx\\le 1\\)</span>. Here <span>\\(\\alpha _{n}=n \\omega _{n-1}^{1/(n-1)}\\)</span> with <span>\\(\\omega _{n-1}\\)</span> being the surface area of the <span>\\((n-1)\\)</span>-dimensional unit sphere.</p><p>Relying on above result, by blow-up analysis, we consider the compactness of function family <span>\\(\\{u_\\epsilon \\}_{0&lt;\\epsilon &lt;1}\\)</span> and prove, up to a subsequence, <span>\\(u_\\epsilon \\rightarrow u_0\\)</span> in <span>\\(W^{1,n}_0(\\Omega )\\cap C^0({\\overline{\\Omega }})\\cap C_{\\textrm{loc}}^{1}({\\overline{\\Omega }}{\\setminus }\\{0\\})\\)</span> as <span>\\(\\epsilon \\rightarrow 0\\)</span>, where <span>\\(u_0\\)</span> is an extremal function of the following supremum </p><div><div><span>$$\\begin{aligned} \\sup _{u\\in W_0^{1,n}(\\Omega ),\\,\\int _{\\Omega }|\\nabla u|^ndx\\le 1}\\int _{\\Omega }(e^{\\alpha _n|u|^{\\frac{n}{n-1}}}-1)dx. \\end{aligned}$$</span></div></div></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1357 - 1379"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01530-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this note is to study the compactness of extremals for the singular Moser-Trudinger inequality. More precisely, let \(\Omega \subset {\mathbb {R}}^n\), \(n\ge 2\), be a bounded open smooth domain and \(0\in \Omega \), \(W^{1,n}_{0}(\Omega )\) be the standard Sobolev space. For \(\epsilon \in [0,1)\), Csato-Roy-Nguyen [J. Diff. Equ. 270:843–882, 2021] proved that the following singular Moser-Trudinger inequality

$$\begin{aligned} \sup _{u\in W_0^{1,n}(\Omega ),\,\int _{\Omega }|\nabla u|^ndx\le 1}\int _{\Omega }\frac{e^{\alpha _n(1-\epsilon )|u|^{\frac{n}{n-1}}}-1 }{|x|^{n\epsilon }}dx \end{aligned}$$

can be achieved by a nonnegative function \(u_\epsilon \in W^{1,n}_{0}(\Omega )\) with \(\int _{\Omega }|\nabla u_\epsilon |^n dx\le 1\). Here \(\alpha _{n}=n \omega _{n-1}^{1/(n-1)}\) with \(\omega _{n-1}\) being the surface area of the \((n-1)\)-dimensional unit sphere.

Relying on above result, by blow-up analysis, we consider the compactness of function family \(\{u_\epsilon \}_{0<\epsilon <1}\) and prove, up to a subsequence, \(u_\epsilon \rightarrow u_0\) in \(W^{1,n}_0(\Omega )\cap C^0({\overline{\Omega }})\cap C_{\textrm{loc}}^{1}({\overline{\Omega }}{\setminus }\{0\})\) as \(\epsilon \rightarrow 0\), where \(u_0\) is an extremal function of the following supremum

$$\begin{aligned} \sup _{u\in W_0^{1,n}(\Omega ),\,\int _{\Omega }|\nabla u|^ndx\le 1}\int _{\Omega }(e^{\alpha _n|u|^{\frac{n}{n-1}}}-1)dx. \end{aligned}$$
高维奇异Moser-Trudinger泛函极值的紧致性
本文的主要目的是研究奇异Moser-Trudinger不等式极值的紧性。更准确地说,设\(\Omega \subset {\mathbb {R}}^n\), \(n\ge 2\)为有界开放光滑域,\(0\in \Omega \), \(W^{1,n}_{0}(\Omega )\)为标准Sobolev空间。对于\(\epsilon \in [0,1)\), Csato-Roy-Nguyen [J]。Diff. equation . 270:843-882, 2021]证明了下述奇异Moser-Trudinger不等式$$\begin{aligned} \sup _{u\in W_0^{1,n}(\Omega ),\,\int _{\Omega }|\nabla u|^ndx\le 1}\int _{\Omega }\frac{e^{\alpha _n(1-\epsilon )|u|^{\frac{n}{n-1}}}-1 }{|x|^{n\epsilon }}dx \end{aligned}$$可以用一个带\(\int _{\Omega }|\nabla u_\epsilon |^n dx\le 1\)的非负函数\(u_\epsilon \in W^{1,n}_{0}(\Omega )\)来实现。这里是\(\alpha _{n}=n \omega _{n-1}^{1/(n-1)}\), \(\omega _{n-1}\)是\((n-1)\)维单位球的表面积。根据上述结果,通过爆破分析,我们考虑了函数族\(\{u_\epsilon \}_{0<\epsilon <1}\)的紧性,并证明了直到一个子序列,\(W^{1,n}_0(\Omega )\cap C^0({\overline{\Omega }})\cap C_{\textrm{loc}}^{1}({\overline{\Omega }}{\setminus }\{0\})\)中的\(u_\epsilon \rightarrow u_0\)为\(\epsilon \rightarrow 0\),其中\(u_0\)是下一个上值的极值函数 $$\begin{aligned} \sup _{u\in W_0^{1,n}(\Omega ),\,\int _{\Omega }|\nabla u|^ndx\le 1}\int _{\Omega }(e^{\alpha _n|u|^{\frac{n}{n-1}}}-1)dx. \end{aligned}$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信