Developing a novel layer network structure for a LSTM model to predict mean monthly river streamflow

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Amin Gharehbaghi, Redvan Ghasemlounia, Shahaboddin Daneshvar, Farshad Ahmadi
{"title":"Developing a novel layer network structure for a LSTM model to predict mean monthly river streamflow","authors":"Amin Gharehbaghi,&nbsp;Redvan Ghasemlounia,&nbsp;Shahaboddin Daneshvar,&nbsp;Farshad Ahmadi","doi":"10.1007/s13201-025-02535-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, novel innovative DDN layer network structures by hybridizing double-LSTM model with an addition layer (+) (<i>i.e.,</i> 2LSTM and 2LSTM + layer network models) are developed purposefully to enhance prediction performance of the mean monthly Maroon River streamflow (<i>MRSF</i><sub><i>m</i></sub>) in Iran from October 1987 to September 2017. For doing so, to select the most effective parameters on <i>MRSF</i><sub><i>m</i></sub>, the Pearson’s correlation coefficient (PCC) and Cosine amplitude sensitivity (CAS) as features selection process are carried out for potential meteorological variables in the study area (<i>i.e.,</i> average monthly temperature (<i>T</i><sub><i>m</i></sub>), evaporation (<i>ET</i><sub><i>m</i></sub>), and precipitation (<i>P</i><sub><i>m</i></sub>)) and target (<i>MRSF</i><sub><i>m</i></sub>). The results show that <i>T</i><sub><i>m</i></sub> and <i>ET</i><sub><i>m</i></sub> have an insignificant influence on <i>MRSF</i><sub><i>m</i></sub>, thus, only <i>P</i><sub><i>m</i></sub> is used as the most effective input variable in predicting <i>MRSF</i><sub><i>m</i></sub>. Due to a well-balanced network model’s structural outline in the suggested novel hybrid 2LSTM + model, it accordingly yields to a suitable total learnable parameter (<i>TLP</i>) compared to ordinary standalone LSTM and GRU as the benchmark models developed in the similar meta-parameters. This model under the optimal meant meta-parameters tuned <i>i.e.,</i> state activation functions (<i>SAF</i>) = <i>tanh-softsign</i>, numbers of hidden neurons (<i>NHN</i>) = 75, dropout rate (<i>P-rate</i>) = 0.5, performs best among the models with an <i>R</i><sup>2</sup> of 0.68, <i>NSE</i> of 0.63, <i>PBIAS</i> of 41%, <i>KGE</i> of 0.79, and <i>RMSE</i> of 19.24 m<sup>3</sup>/s. Comparatively, a standard gated recurrent units (GRU) and LSTM as benchmark models using the optimal scenario generate the following results: <i>R</i><sup>2</sup> are 0.57 and 0.67, <i>NSE</i> are 0.53 and 0.61, <i>PBIAS</i> are 109 and 49%, <i>KGE</i> are 0.63 and 0.79, and <i>RMSE</i> are 21.11 and 19.32 m<sup>3</sup>/s, respectively. Generally, in all models, in the equal <i>NHN</i>, rising <i>P-rate</i> value reduces convergence time.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02535-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02535-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, novel innovative DDN layer network structures by hybridizing double-LSTM model with an addition layer (+) (i.e., 2LSTM and 2LSTM + layer network models) are developed purposefully to enhance prediction performance of the mean monthly Maroon River streamflow (MRSFm) in Iran from October 1987 to September 2017. For doing so, to select the most effective parameters on MRSFm, the Pearson’s correlation coefficient (PCC) and Cosine amplitude sensitivity (CAS) as features selection process are carried out for potential meteorological variables in the study area (i.e., average monthly temperature (Tm), evaporation (ETm), and precipitation (Pm)) and target (MRSFm). The results show that Tm and ETm have an insignificant influence on MRSFm, thus, only Pm is used as the most effective input variable in predicting MRSFm. Due to a well-balanced network model’s structural outline in the suggested novel hybrid 2LSTM + model, it accordingly yields to a suitable total learnable parameter (TLP) compared to ordinary standalone LSTM and GRU as the benchmark models developed in the similar meta-parameters. This model under the optimal meant meta-parameters tuned i.e., state activation functions (SAF) = tanh-softsign, numbers of hidden neurons (NHN) = 75, dropout rate (P-rate) = 0.5, performs best among the models with an R2 of 0.68, NSE of 0.63, PBIAS of 41%, KGE of 0.79, and RMSE of 19.24 m3/s. Comparatively, a standard gated recurrent units (GRU) and LSTM as benchmark models using the optimal scenario generate the following results: R2 are 0.57 and 0.67, NSE are 0.53 and 0.61, PBIAS are 109 and 49%, KGE are 0.63 and 0.79, and RMSE are 21.11 and 19.32 m3/s, respectively. Generally, in all models, in the equal NHN, rising P-rate value reduces convergence time.

为LSTM模型开发一种新的层网结构来预测月平均河流流量
为了提高1987年10月至2017年9月伊朗Maroon River平均月流量(MRSFm)的预测性能,本研究有针对性地开发了一种新的创新DDN层网络结构,即双lstm模型和附加层(+)(即2LSTM和2LSTM +层网络模型)。为此,为了选择MRSFm上最有效的参数,对研究区潜在气象变量(即月平均温度(Tm)、蒸发量(ETm)和降水量(Pm))和目标(MRSFm)进行了Pearson’s相关系数(PCC)和余弦振幅灵敏度(CAS)作为特征选择过程。结果表明,Tm和ETm对MRSFm的影响不显著,因此,只有Pm作为预测MRSFm最有效的输入变量。由于所建议的新型混合2LSTM +模型具有平衡良好的网络模型结构轮廓,因此与普通的独立LSTM和GRU相比,它产生了合适的总可学习参数(TLP),作为在类似元参数中开发的基准模型。该模型在状态激活函数(SAF) = tanh-softsign、隐藏神经元数(NHN) = 75、退出率(P-rate) = 0.5的最优平均元参数下表现最佳,R2为0.68,NSE为0.63,PBIAS为41%,KGE为0.79,RMSE为19.24 m3/s。相比之下,使用最优情景的标准门控循环单元(GRU)和LSTM作为基准模型得到的结果如下:R2分别为0.57和0.67,NSE分别为0.53和0.61,PBIAS分别为109和49%,KGE分别为0.63和0.79,RMSE分别为21.11和19.32 m3/s。一般来说,在所有模型中,在相同的NHN下,p率值的增加会缩短收敛时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信