Variational inference for estimating dynamic stochastic block models through an evolutionary algorithm

IF 1.3 4区 计算机科学 Q2 STATISTICS & PROBABILITY
Luca Brusa, Fulvia Pennoni
{"title":"Variational inference for estimating dynamic stochastic block models through an evolutionary algorithm","authors":"Luca Brusa,&nbsp;Fulvia Pennoni","doi":"10.1007/s11634-025-00634-9","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic temporal networks are important structures to capture node dependencies and their evolution over time. The dynamic stochastic block model, commonly used with longitudinal network data, is estimated maximizing the likelihood function through the variational expectation-maximization (VEM) algorithm. However, maximization is challenging due to the presence of multiple local maxima. In this paper, we first conduct a simulation study to assess the performance of six different parameter initialization strategies. Second, we introduce a novel specification of the VEM through a genetic algorithm, enabling a more comprehensive exploration of the parameter space. Results from both simulations and historical data on infectious disease transmission highlight the advantages of this approach in overcoming convergence to local maxima and improving node clustering in temporal network data.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"19 classification and related methods”","pages":"469 - 492"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11634-025-00634-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-025-00634-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic temporal networks are important structures to capture node dependencies and their evolution over time. The dynamic stochastic block model, commonly used with longitudinal network data, is estimated maximizing the likelihood function through the variational expectation-maximization (VEM) algorithm. However, maximization is challenging due to the presence of multiple local maxima. In this paper, we first conduct a simulation study to assess the performance of six different parameter initialization strategies. Second, we introduce a novel specification of the VEM through a genetic algorithm, enabling a more comprehensive exploration of the parameter space. Results from both simulations and historical data on infectious disease transmission highlight the advantages of this approach in overcoming convergence to local maxima and improving node clustering in temporal network data.

用进化算法估计动态随机块模型的变分推理
动态时间网络是捕获节点依赖关系及其随时间演变的重要结构。采用变分期望最大化(VEM)算法对纵向网络数据常用的动态随机块模型进行似然函数最大化估计。然而,由于存在多个局部最大值,最大化是具有挑战性的。在本文中,我们首先进行了仿真研究,以评估六种不同参数初始化策略的性能。其次,我们通过遗传算法引入了一种新的VEM规范,使得对参数空间的探索更加全面。传染病传播的仿真结果和历史数据都表明,该方法在克服局部极大值收敛和改进时间网络数据的节点聚类方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信