Long Time Regularity for 3D Gravity Waves with Vorticity

IF 2.6 1区 数学 Q1 MATHEMATICS
Daniel Ginsberg, Fabio Pusateri
{"title":"Long Time Regularity for 3D Gravity Waves with Vorticity","authors":"Daniel Ginsberg,&nbsp;Fabio Pusateri","doi":"10.1007/s40818-025-00206-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Cauchy problem for the full free boundary Euler equations in 3d with an initial small velocity of size <span>\\(O(\\varepsilon_0)\\)</span>, in a moving domain which is initially an <span>\\(O(\\varepsilon_0)\\)</span> perturbation of a flat interface. We assume that the initial vorticity is of size <span>\\(O(\\varepsilon_1)\\)</span> and prove a regularity result up to times of the order <span>\\(\\varepsilon_1^{-1+}\\)</span>, independent of <span>\\({\\varepsilon _0}\\)</span>. A key part of our proof is a normal form type argument for the vorticity equation; this needs to be performed in the full three dimensional domain and is necessary to effectively remove the irrotational components from the quadratic stretching terms and uniformly control the vorticity. Another difficulty is to obtain sharp decay for the irrotational component of the velocity and the interface; to do this we perform a dispersive analysis on the boundary equations, which are forced by a singular contribution from the rotational component of the velocity. As a corollary of our result, when <span>\\({\\varepsilon _1}\\)</span> goes to zero we recover the celebrated global regularity results of Wu (Invent. Math. 2012) and Germain, Masmoudi and Shatah (Ann. of Math. 2013) in the irrotational case.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00206-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Cauchy problem for the full free boundary Euler equations in 3d with an initial small velocity of size \(O(\varepsilon_0)\), in a moving domain which is initially an \(O(\varepsilon_0)\) perturbation of a flat interface. We assume that the initial vorticity is of size \(O(\varepsilon_1)\) and prove a regularity result up to times of the order \(\varepsilon_1^{-1+}\), independent of \({\varepsilon _0}\). A key part of our proof is a normal form type argument for the vorticity equation; this needs to be performed in the full three dimensional domain and is necessary to effectively remove the irrotational components from the quadratic stretching terms and uniformly control the vorticity. Another difficulty is to obtain sharp decay for the irrotational component of the velocity and the interface; to do this we perform a dispersive analysis on the boundary equations, which are forced by a singular contribution from the rotational component of the velocity. As a corollary of our result, when \({\varepsilon _1}\) goes to zero we recover the celebrated global regularity results of Wu (Invent. Math. 2012) and Germain, Masmoudi and Shatah (Ann. of Math. 2013) in the irrotational case.

具有涡度的三维重力波的长时间规律性
我们考虑三维空间中完全自由边界欧拉方程的柯西问题,初始速度为\(O(\varepsilon_0)\),运动域初始为平面界面的\(O(\varepsilon_0)\)摄动。我们假设初始涡量的大小为\(O(\varepsilon_1)\),并证明了一个规律性的结果,直到\(\varepsilon_1^{-1+}\)阶,独立于\({\varepsilon _0}\)。我们证明的一个关键部分是涡度方程的正规型论证;这需要在全三维范围内进行,并且是有效地从二次拉伸项中去除无旋转分量和均匀控制涡量所必需的。另一个困难是获得速度和界面的非旋转分量的急剧衰减;为了做到这一点,我们对边界方程进行了色散分析,这些方程是由速度的旋转分量的奇异贡献所迫的。作为我们的结果的一个推论,当\({\varepsilon _1}\)趋于零时,我们恢复了著名的Wu (Invent)的全局正则性结果。《数学》,2012),以及Germain, Masmoudi和Shatah (Ann。数学。2013)在旋转的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信