Shintaro Hatanaka, Hikaru Okubo, Kentaro Hanzawa, Ryo Kajiki, Ken Yamaguchi, Ken Nakano
{"title":"Exploring Abrasion Pattern Formation with Sliding Contact Resonance: What Timescale Determines Periodic Spacing?","authors":"Shintaro Hatanaka, Hikaru Okubo, Kentaro Hanzawa, Ryo Kajiki, Ken Yamaguchi, Ken Nakano","doi":"10.1007/s11249-025-02038-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study has developed the sliding contact resonance (SCR) method, which measures three timescales, in no contact, stationary contact, and sliding contact, to investigate the mechanism of abrasion pattern (AP) formation engraved on rubber surfaces. The SCR method employs a unique homemade apparatus of a single-degree-of-freedom forced oscillation system utilizing a macroscale sliding contact between a rubber roller and a rigid surface. This paper focuses on the timescales, based on the hypothesis that the product of the drive speed and an intrinsic time determines the AP spacing. As a result, we find that it is not the mechanical or material timescale, but rather the timescale of sliding contact, that determines the limiting AP spacing. Their strong correlation suggests that the intrinsic time of the rubber surface, required for deformation and recovery in sliding contact, determines the periodic spacing engraved on the surface.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-025-02038-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-02038-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study has developed the sliding contact resonance (SCR) method, which measures three timescales, in no contact, stationary contact, and sliding contact, to investigate the mechanism of abrasion pattern (AP) formation engraved on rubber surfaces. The SCR method employs a unique homemade apparatus of a single-degree-of-freedom forced oscillation system utilizing a macroscale sliding contact between a rubber roller and a rigid surface. This paper focuses on the timescales, based on the hypothesis that the product of the drive speed and an intrinsic time determines the AP spacing. As a result, we find that it is not the mechanical or material timescale, but rather the timescale of sliding contact, that determines the limiting AP spacing. Their strong correlation suggests that the intrinsic time of the rubber surface, required for deformation and recovery in sliding contact, determines the periodic spacing engraved on the surface.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.