On vanishing diffusivity selection for the advection equation

IF 0.9 3区 数学 Q1 MATHEMATICS
Giulia Mescolini, Jules Pitcho, Massimo Sorella
{"title":"On vanishing diffusivity selection for the advection equation","authors":"Giulia Mescolini,&nbsp;Jules Pitcho,&nbsp;Massimo Sorella","doi":"10.1007/s10231-025-01543-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study the advection equation along vector fields singular at the initial time. More precisely, we prove that for divergence-free vector fields in <span>\\(L^1_{loc}((0,T];BV(\\mathbb {T}^d;\\mathbb {R}^d))\\cap L^2((0,T) \\times \\mathbb {T}^d;\\mathbb {R}^d))\\)</span>, there exists a unique vanishing diffusivity solution. This class includes the vector field constructed by Depauw in [13], for which there are infinitely many distinct bounded solutions to the advection equation.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1667 - 1687"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-025-01543-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-025-01543-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the advection equation along vector fields singular at the initial time. More precisely, we prove that for divergence-free vector fields in \(L^1_{loc}((0,T];BV(\mathbb {T}^d;\mathbb {R}^d))\cap L^2((0,T) \times \mathbb {T}^d;\mathbb {R}^d))\), there exists a unique vanishing diffusivity solution. This class includes the vector field constructed by Depauw in [13], for which there are infinitely many distinct bounded solutions to the advection equation.

关于平流方程的消失扩散系数选择
我们研究了沿初始奇异矢量场的平流方程。更确切地说,我们证明了\(L^1_{loc}((0,T];BV(\mathbb {T}^d;\mathbb {R}^d))\cap L^2((0,T) \times \mathbb {T}^d;\mathbb {R}^d))\)中无散度向量场存在唯一的消失扩散解。这类包括了depow在[13]中构造的向量场,对于这个向量场,平流方程有无穷多个不同的有界解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信