Mesoscopic and Macroscopic Entropy Balance Equations in a Stochastic Dynamics and Its Deterministic Limit

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Hong Qian, Zhongwei Shen
{"title":"Mesoscopic and Macroscopic Entropy Balance Equations in a Stochastic Dynamics and Its Deterministic Limit","authors":"Hong Qian,&nbsp;Zhongwei Shen","doi":"10.1007/s10955-025-03489-8","DOIUrl":null,"url":null,"abstract":"<div><p>Entropy, its production, and its change in a dynamical system can be understood from either a fully stochastic dynamic description or a deterministic dynamics exhibiting chaotic behaviors. By taking the former approach based on the general diffusion process with diffusion <span>\\(\\alpha ^{-1}\\varvec{D}(\\textbf{x})\\)</span> and drift <span>\\(\\textbf{b}(\\textbf{x})\\)</span>, where <span>\\(\\alpha \\)</span> represents the “size parameter” of a system, we show that there are two distinctly different entropy balance equations. One reads <span>\\(\\textrm{d}S^{(\\alpha )}/\\textrm{d}t = e^{(\\alpha )}_p + Q^{(\\alpha )}_{ex}\\)</span> for all <span>\\(\\alpha \\)</span>. Our key result addresses the asymptotic of the entropy production rate <span>\\(e^{(\\alpha )}_p\\)</span> and heat exchange rate <span>\\(Q^{(\\alpha )}_{ex}\\)</span> up to <span>\\(O(\\tfrac{1}{\\alpha })\\)</span>-corrections as system’s size <span>\\(\\alpha \\rightarrow \\infty \\)</span>. It yields in particular that the “extensive”, leading <span>\\(\\alpha \\)</span>-order terms of <span>\\(e^{(\\alpha )}_p\\)</span> and <span>\\(Q^{(\\alpha )}_{ex}\\)</span> are exactly canceled out. Therefore in the asymptotic limit of <span>\\(\\alpha \\rightarrow \\infty \\)</span>, there is a second, local entropy balance equation <span>\\(\\textrm{d}S/\\textrm{d}t=\\nabla \\cdot \\textbf{b}(\\textbf{x}(t))+\\left( \\varvec{D}:\\varvec{\\varSigma }^{-1}\\right) (\\textbf{x}(t))\\)</span> on the order of <i>O</i>(1), where <span>\\(\\alpha ^{-1}\\varvec{D}(\\textbf{x}(t))\\)</span> represents the randomness generated in the dynamics usually represented by metric entropy, <span>\\(\\alpha ^{-1}\\varvec{\\varSigma }(\\textbf{x}(t))\\)</span> is the covariance matrix of the local Gaussian description at <span>\\(\\textbf{x}(t)\\)</span> that is a solution to the ordinary differential equation <span>\\(\\dot{\\textbf{x}}=\\textbf{b}(\\textbf{x})\\)</span> at time <i>t</i>, and <span>\\(\\varvec{D}:\\varvec{\\varSigma }^{-1}\\)</span> is the Frobenius product of <span>\\(\\varvec{D}\\)</span> and <span>\\(\\varvec{\\varSigma }^{-1}\\)</span>. This latter equation is akin to the notions of volume-preserving conservative dynamics and entropy production in the deterministic dynamic approach to irreversible thermodynamics <i>à la</i> D. Ruelle [55]. Our study follows the rigorous approach and formalism of [28]; the mathematical details with sufficient care are given in the appendices.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03489-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Entropy, its production, and its change in a dynamical system can be understood from either a fully stochastic dynamic description or a deterministic dynamics exhibiting chaotic behaviors. By taking the former approach based on the general diffusion process with diffusion \(\alpha ^{-1}\varvec{D}(\textbf{x})\) and drift \(\textbf{b}(\textbf{x})\), where \(\alpha \) represents the “size parameter” of a system, we show that there are two distinctly different entropy balance equations. One reads \(\textrm{d}S^{(\alpha )}/\textrm{d}t = e^{(\alpha )}_p + Q^{(\alpha )}_{ex}\) for all \(\alpha \). Our key result addresses the asymptotic of the entropy production rate \(e^{(\alpha )}_p\) and heat exchange rate \(Q^{(\alpha )}_{ex}\) up to \(O(\tfrac{1}{\alpha })\)-corrections as system’s size \(\alpha \rightarrow \infty \). It yields in particular that the “extensive”, leading \(\alpha \)-order terms of \(e^{(\alpha )}_p\) and \(Q^{(\alpha )}_{ex}\) are exactly canceled out. Therefore in the asymptotic limit of \(\alpha \rightarrow \infty \), there is a second, local entropy balance equation \(\textrm{d}S/\textrm{d}t=\nabla \cdot \textbf{b}(\textbf{x}(t))+\left( \varvec{D}:\varvec{\varSigma }^{-1}\right) (\textbf{x}(t))\) on the order of O(1), where \(\alpha ^{-1}\varvec{D}(\textbf{x}(t))\) represents the randomness generated in the dynamics usually represented by metric entropy, \(\alpha ^{-1}\varvec{\varSigma }(\textbf{x}(t))\) is the covariance matrix of the local Gaussian description at \(\textbf{x}(t)\) that is a solution to the ordinary differential equation \(\dot{\textbf{x}}=\textbf{b}(\textbf{x})\) at time t, and \(\varvec{D}:\varvec{\varSigma }^{-1}\) is the Frobenius product of \(\varvec{D}\) and \(\varvec{\varSigma }^{-1}\). This latter equation is akin to the notions of volume-preserving conservative dynamics and entropy production in the deterministic dynamic approach to irreversible thermodynamics à la D. Ruelle [55]. Our study follows the rigorous approach and formalism of [28]; the mathematical details with sufficient care are given in the appendices.

随机动力学中的介观和宏观熵平衡方程及其确定性极限
在一个动力系统中,熵、熵的产生和熵的变化既可以从完全随机的动力学描述中理解,也可以从表现混沌行为的确定性动力学中理解。采用前者基于扩散\(\alpha ^{-1}\varvec{D}(\textbf{x})\)和漂移\(\textbf{b}(\textbf{x})\)的一般扩散过程的方法,其中\(\alpha \)表示系统的“大小参数”,我们表明存在两个明显不同的熵平衡方程。一个读\(\textrm{d}S^{(\alpha )}/\textrm{d}t = e^{(\alpha )}_p + Q^{(\alpha )}_{ex}\)为所有\(\alpha \)。我们的关键结果解决了熵产率\(e^{(\alpha )}_p\)和热交换率\(Q^{(\alpha )}_{ex}\)直到\(O(\tfrac{1}{\alpha })\)的渐近-校正系统的大小\(\alpha \rightarrow \infty \)。它特别产生了\(e^{(\alpha )}_p\)和\(Q^{(\alpha )}_{ex}\)的“广泛的”,主要的\(\alpha \) -阶项完全被消去了。因此,在\(\alpha \rightarrow \infty \)的渐近极限处,存在第二个O(1)阶的局部熵平衡方程\(\textrm{d}S/\textrm{d}t=\nabla \cdot \textbf{b}(\textbf{x}(t))+\left( \varvec{D}:\varvec{\varSigma }^{-1}\right) (\textbf{x}(t))\),其中\(\alpha ^{-1}\varvec{D}(\textbf{x}(t))\)表示通常由度量熵表示的动力学中产生的随机性,\(\alpha ^{-1}\varvec{\varSigma }(\textbf{x}(t))\)是在\(\textbf{x}(t)\)处的局部高斯描述的协方差矩阵,该协方差矩阵是常微分方程\(\dot{\textbf{x}}=\textbf{b}(\textbf{x})\)在t时刻的解。\(\varvec{D}:\varvec{\varSigma }^{-1}\)是\(\varvec{D}\)和\(\varvec{\varSigma }^{-1}\)的Frobenius产品。后一个方程类似于不可逆热力学的确定性动态方法中的保体积保守动力学和熵产生的概念(参见D. Ruelle[55])。我们的研究遵循b[28]的严谨方法和形式主义;在附录中有详细的数学说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信