Strength and dilatancy of sands from their image-based intrinsic properties

IF 2.9 3区 工程技术
Lin Gao, Junxing Zheng, Dong Wang, Yu Miao
{"title":"Strength and dilatancy of sands from their image-based intrinsic properties","authors":"Lin Gao,&nbsp;Junxing Zheng,&nbsp;Dong Wang,&nbsp;Yu Miao","doi":"10.1007/s10035-025-01551-6","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in image-based particle shape characterization allow reliably and rapidly determining particle roundness and sphericity of a statistically significant large number of particles, which enables systematic investigation of the influence of roundness and sphericity on macroscopic engineering behaviors such as strength and dilatancy of sands. This study collects 22 sands with a wide range of particle sphericity, roundness, gradations, and mean particle sizes. A total of 207 direct shear tests are prepared at various relative densities and normal stresses to establish the database. This database is further augmented by experimental data of another 97 sands from published geotechnical engineering sources. Influences of image-based sphericity, roundness, and gradation on the frictional and dilational components of soil strength are analyzed, leading to observations that angular, elongated, and well-graded sands exhibit larger values of critical strength, dilatancy, and peak strength. A material parameter is proposed by integrating roundness and gradation that captures the joint effects of intrinsic properties. The material parameter is used to develop predictive models for critical friction angles, dilation angles, and peak friction angles. The effectiveness and accuracy of the predicted models are validated by various published geotechnical experimental data. The material parameter and predictive models provide insights into relationships between micro particle level properties and macro mechanical behavior of sands and enable researchers and practitioners to rapidly estimate the strength and dilatancy of sands without performing laboratory tests.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01551-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in image-based particle shape characterization allow reliably and rapidly determining particle roundness and sphericity of a statistically significant large number of particles, which enables systematic investigation of the influence of roundness and sphericity on macroscopic engineering behaviors such as strength and dilatancy of sands. This study collects 22 sands with a wide range of particle sphericity, roundness, gradations, and mean particle sizes. A total of 207 direct shear tests are prepared at various relative densities and normal stresses to establish the database. This database is further augmented by experimental data of another 97 sands from published geotechnical engineering sources. Influences of image-based sphericity, roundness, and gradation on the frictional and dilational components of soil strength are analyzed, leading to observations that angular, elongated, and well-graded sands exhibit larger values of critical strength, dilatancy, and peak strength. A material parameter is proposed by integrating roundness and gradation that captures the joint effects of intrinsic properties. The material parameter is used to develop predictive models for critical friction angles, dilation angles, and peak friction angles. The effectiveness and accuracy of the predicted models are validated by various published geotechnical experimental data. The material parameter and predictive models provide insights into relationships between micro particle level properties and macro mechanical behavior of sands and enable researchers and practitioners to rapidly estimate the strength and dilatancy of sands without performing laboratory tests.

Graphical Abstract

Abstract Image

砂的强度和剪胀从其图像为基础的内在属性
基于图像的颗粒形状表征的最新进展,可以可靠、快速地确定具有统计学意义的大量颗粒的颗粒圆度和球度,从而可以系统地研究圆度和球度对宏观工程行为(如砂土的强度和剪胀性)的影响。这项研究收集了22种砂,它们的颗粒球形度、圆度、等级和平均粒径范围很广。在不同的相对密度和正应力下,共进行了207次直剪试验,以建立数据库。该数据库还进一步扩充了另外97种砂的实验数据,这些数据来自已发表的岩土工程资料。分析了基于图像的球形度、圆度和分级对土强度的摩擦和膨胀分量的影响,结果表明,有棱角、细长和分级良好的砂具有更大的临界强度、剪胀性和峰值强度值。通过对圆度和渐变的综合,提出了一个材料参数,该参数可以捕捉到材料内在特性的共同影响。材料参数用于建立临界摩擦角、膨胀角和峰值摩擦角的预测模型。各种已发表的岩土试验数据验证了预测模型的有效性和准确性。材料参数和预测模型提供了砂土微观颗粒特性与宏观力学行为之间关系的见解,使研究人员和从业人员能够快速估计砂土的强度和剪胀性,而无需进行实验室测试。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信