{"title":"Through-the-Thickness Z-pinning Reinforcements to Improve Energy Absorption Capabilities of CFRP Crash Structures: Numerical Development","authors":"A. De Biasio, H. Ghasemnejad","doi":"10.1007/s10443-025-10348-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs numerical methods to model through-the-thickness reinforcements in CFRP tubular structures under axial impact, investigating the influence of reinforcement configurations on crashworthiness performance. Experimental validation involves testing unpinned tubular structures to establish a baseline model. LS-DYNA finite element models simulate low-velocity axial impacts, incorporating energy-based tiebreak contacts or solid cohesive elements to describe interlaminar bridging. Through-the-thickness are introduced through a homogenous mesh system or locally refined mesh at pin locations. Various reinforced tube designs with different pin diameters and areal densities are examined to identify the optimal pinned design for crashworthiness. The research demonstrates numerically that pinning enhances crashworthiness performances in axial crushing of composite tubes.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 4","pages":"1521 - 1557"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-025-10348-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-025-10348-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs numerical methods to model through-the-thickness reinforcements in CFRP tubular structures under axial impact, investigating the influence of reinforcement configurations on crashworthiness performance. Experimental validation involves testing unpinned tubular structures to establish a baseline model. LS-DYNA finite element models simulate low-velocity axial impacts, incorporating energy-based tiebreak contacts or solid cohesive elements to describe interlaminar bridging. Through-the-thickness are introduced through a homogenous mesh system or locally refined mesh at pin locations. Various reinforced tube designs with different pin diameters and areal densities are examined to identify the optimal pinned design for crashworthiness. The research demonstrates numerically that pinning enhances crashworthiness performances in axial crushing of composite tubes.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.