Through-the-Thickness Z-pinning Reinforcements to Improve Energy Absorption Capabilities of CFRP Crash Structures: Numerical Development

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
A. De Biasio, H. Ghasemnejad
{"title":"Through-the-Thickness Z-pinning Reinforcements to Improve Energy Absorption Capabilities of CFRP Crash Structures: Numerical Development","authors":"A. De Biasio,&nbsp;H. Ghasemnejad","doi":"10.1007/s10443-025-10348-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs numerical methods to model through-the-thickness reinforcements in CFRP tubular structures under axial impact, investigating the influence of reinforcement configurations on crashworthiness performance. Experimental validation involves testing unpinned tubular structures to establish a baseline model. LS-DYNA finite element models simulate low-velocity axial impacts, incorporating energy-based tiebreak contacts or solid cohesive elements to describe interlaminar bridging. Through-the-thickness are introduced through a homogenous mesh system or locally refined mesh at pin locations. Various reinforced tube designs with different pin diameters and areal densities are examined to identify the optimal pinned design for crashworthiness. The research demonstrates numerically that pinning enhances crashworthiness performances in axial crushing of composite tubes.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 4","pages":"1521 - 1557"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-025-10348-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-025-10348-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs numerical methods to model through-the-thickness reinforcements in CFRP tubular structures under axial impact, investigating the influence of reinforcement configurations on crashworthiness performance. Experimental validation involves testing unpinned tubular structures to establish a baseline model. LS-DYNA finite element models simulate low-velocity axial impacts, incorporating energy-based tiebreak contacts or solid cohesive elements to describe interlaminar bridging. Through-the-thickness are introduced through a homogenous mesh system or locally refined mesh at pin locations. Various reinforced tube designs with different pin diameters and areal densities are examined to identify the optimal pinned design for crashworthiness. The research demonstrates numerically that pinning enhances crashworthiness performances in axial crushing of composite tubes.

提高CFRP碰撞结构吸能能力的贯穿厚度z型钉钉增强:数值发展
本研究采用数值方法对碳纤维布管状结构在轴向冲击下的穿厚加固进行建模,研究加固配置对耐撞性能的影响。实验验证包括测试未固定管状结构以建立基线模型。LS-DYNA有限元模型模拟低速轴向冲击,结合基于能量的拉断接触或固体内聚元素来描述层间桥接。穿透厚度是通过均匀网格系统或在引脚位置的局部细化网格引入的。研究了不同钉钉直径和面密度的加固管设计,以确定最优的耐撞钉钉设计。数值研究表明,在复合材料管材轴向破碎过程中,钉接提高了管材的耐撞性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信