An alternative equation for generalized polynomials involving measure and category constraints

IF 0.6 3区 数学 Q3 MATHEMATICS
Z. Boros, R. Menzer
{"title":"An alternative equation for generalized polynomials involving measure and category constraints","authors":"Z. Boros,&nbsp;R. Menzer","doi":"10.1007/s10474-024-01498-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a generalized polynomial <span>\\( f \\colon \\mathbb{R}^N \\to \\mathbb{R} \\)</span> that satisfies the additional equation <span>\\( f(x) f(y) = 0 \\)</span> for the pairs <span>\\( (x,y) \\in D \\)</span>, where <span>\\( D \\subseteq \\mathbb{R}^{2N} \\)</span> has a positive Lebesgue measure or it is a second category Baire set. We prove that <span>\\( f(x) = 0 \\)</span> for all <span>\\( x \\in \\mathbb{R}^N \\)</span>. In fact, the first statement is established in a considerably more general setting. Then we formulate statements concerning the signs of generalized monomials <span>\\( g \\colon \\mathbb{R} \\to \\mathbb{R} \\)</span> of even degree that satisfy the inequality <span>\\( g(x) g(y) \\geq 0 \\)</span> for the pairs \n<span>\\( (x,y) \\in E \\)</span>, where \n<span>\\( E \\subseteq \\mathbb{R}^{2} \\)</span> has a positive planar Lebesgue measure or it is a second category Baire set.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"175 2","pages":"376 - 394"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-024-01498-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01498-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider a generalized polynomial \( f \colon \mathbb{R}^N \to \mathbb{R} \) that satisfies the additional equation \( f(x) f(y) = 0 \) for the pairs \( (x,y) \in D \), where \( D \subseteq \mathbb{R}^{2N} \) has a positive Lebesgue measure or it is a second category Baire set. We prove that \( f(x) = 0 \) for all \( x \in \mathbb{R}^N \). In fact, the first statement is established in a considerably more general setting. Then we formulate statements concerning the signs of generalized monomials \( g \colon \mathbb{R} \to \mathbb{R} \) of even degree that satisfy the inequality \( g(x) g(y) \geq 0 \) for the pairs \( (x,y) \in E \), where \( E \subseteq \mathbb{R}^{2} \) has a positive planar Lebesgue measure or it is a second category Baire set.

一个涉及测度约束和范畴约束的广义多项式的替代方程
本文考虑一个广义多项式 \( f \colon \mathbb{R}^N \to \mathbb{R} \) 它满足附加方程 \( f(x) f(y) = 0 \) 对于配对 \( (x,y) \in D \),其中 \( D \subseteq \mathbb{R}^{2N} \) 有一个正的勒贝格测度或者它是第二类贝尔集。我们证明 \( f(x) = 0 \) 对所有人 \( x \in \mathbb{R}^N \). 事实上,第一种说法是在相当普遍的背景下建立起来的。然后,我们给出了关于广义单项式符号的表述 \( g \colon \mathbb{R} \to \mathbb{R} \) 满足不等式的偶数次 \( g(x) g(y) \geq 0 \) 对于配对 \( (x,y) \in E \),其中 \( E \subseteq \mathbb{R}^{2} \) 有一个正的平面勒贝格测度或者它是一个二类贝尔集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信