Characterization of wood-decay fungi and damage assessment of infected trees in anthropogenically influenced sites of Mount Makiling Forest Reserve, Philippines
Mark Josell G. Dejasco, Jeferson C. Boncodin, Delyreen L. Alcachupas, Lyka Mae C. Urriza, Ronniel D. Manalo, Jessa P. Ata
{"title":"Characterization of wood-decay fungi and damage assessment of infected trees in anthropogenically influenced sites of Mount Makiling Forest Reserve, Philippines","authors":"Mark Josell G. Dejasco, Jeferson C. Boncodin, Delyreen L. Alcachupas, Lyka Mae C. Urriza, Ronniel D. Manalo, Jessa P. Ata","doi":"10.1007/s00468-025-02642-w","DOIUrl":null,"url":null,"abstract":"<div><p>Wood-decay fungi (WDF) are vital for forest ecosystem functioning but can also cause tree diseases, leading to significant economic impacts on forest management. Here, we characterize WDF and investigate damage severity of infected trees in anthropogenically disturbed sites in Mount Makiling Forest Reserve (MMFR), Philippines. Forty fruiting bodies from 10 fungal species were collected in two anthropogenically influenced sites (PFLA1 and CAMP) in MMFR, with all 10 species recorded in PFLA1 and only 2 in CAMP. Genera of WDF recorded in both sites include <i>Ganoderma, Phellinus, Earliella, Microporus, Fomitopsis, Funalia, Inonotus, Skeletocutis,</i> and <i>Abundisporus</i>. <i>Wallaceodendron celebicum</i> and <i>Swietenia macrophylla</i> trees with and without wood-decay fungi in CAMP were further assessed using Arbotom 2D Sonic Tree Tomography to reveal the damage severity in the presence of WDF. Mean stress wave velocities in the infected <i>W. celebicum</i> (1212.32 m/s) and <i>S. macrophylla</i> (1533.99 m/s) trees were lower, though not significantly, than those with no signs of decay (<i>W. celebicum</i>: 1397.80 m/s; <i>S. macrophylla</i>: 1732.68 m/s), suggesting reduced wood density in trees affected by wood-decay fungi. Acoustic tomography also revealed indications of internal decay among trees without fruiting bodies. Findings from this study can help improve understanding of WDF composition and their impact on trees across different land use types. Further research is needed to examine their interactions with trees under varying environmental and host conditions.</p></div>","PeriodicalId":805,"journal":{"name":"Trees","volume":"39 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trees","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00468-025-02642-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Wood-decay fungi (WDF) are vital for forest ecosystem functioning but can also cause tree diseases, leading to significant economic impacts on forest management. Here, we characterize WDF and investigate damage severity of infected trees in anthropogenically disturbed sites in Mount Makiling Forest Reserve (MMFR), Philippines. Forty fruiting bodies from 10 fungal species were collected in two anthropogenically influenced sites (PFLA1 and CAMP) in MMFR, with all 10 species recorded in PFLA1 and only 2 in CAMP. Genera of WDF recorded in both sites include Ganoderma, Phellinus, Earliella, Microporus, Fomitopsis, Funalia, Inonotus, Skeletocutis, and Abundisporus. Wallaceodendron celebicum and Swietenia macrophylla trees with and without wood-decay fungi in CAMP were further assessed using Arbotom 2D Sonic Tree Tomography to reveal the damage severity in the presence of WDF. Mean stress wave velocities in the infected W. celebicum (1212.32 m/s) and S. macrophylla (1533.99 m/s) trees were lower, though not significantly, than those with no signs of decay (W. celebicum: 1397.80 m/s; S. macrophylla: 1732.68 m/s), suggesting reduced wood density in trees affected by wood-decay fungi. Acoustic tomography also revealed indications of internal decay among trees without fruiting bodies. Findings from this study can help improve understanding of WDF composition and their impact on trees across different land use types. Further research is needed to examine their interactions with trees under varying environmental and host conditions.
期刊介绍:
Trees - Structure and Function publishes original articles on the physiology, biochemistry, functional anatomy, structure and ecology of trees and other woody plants. Also presented are articles concerned with pathology and technological problems, when they contribute to the basic understanding of structure and function of trees. In addition to original articles and short communications, the journal publishes reviews on selected topics concerning the structure and function of trees.