Spatial heterogeneity of indoor carbonaceous aerosol levels and characteristics: comparison with the outdoors and implications for secondary organic aerosol formation and health effects
{"title":"Spatial heterogeneity of indoor carbonaceous aerosol levels and characteristics: comparison with the outdoors and implications for secondary organic aerosol formation and health effects","authors":"Debayan Mandal, Abhishek Chakraborty, Shruti Tripathi","doi":"10.1007/s10874-025-09476-3","DOIUrl":null,"url":null,"abstract":"<div><p>This research examined the composition of PM<sub>2.5</sub>, focusing on elemental carbon (EC), and organic carbon (OC), in six distinct indoor microenvironments (IMEs) and their associated outdoor locations (ODs). Four of the IMEs were located within the academic campus, Indian Institute of Technology Bombay (IITB), while two were situated within 500 m of IITB. Total carbon (TC = OC + EC) constituted 24.49–45.28% of indoor PM<sub>2.5</sub> and 22.87–38.64% of outdoor PM<sub>2.5</sub>. Generally, the campus IMEs exhibited lower average PM concentrations compared to outdoor levels, with the dining room (IME4) being an exception. Indoor secondary organic carbon (ISOC) exceeded outdoor secondary organic carbon (OSOC) in all IMEs, apart from the library (IME3). All EC originated from outdoor sources in two campus-based IMEs—the hostel room (IME1) and the laboratory (IME2). IME4 and IME5 had over 30% of EC generated from indoor sources. OC2 and OC3 comprised over 70% of OC in IME4 and IME5. The study used the indoor-to-outdoor ratio of SOC/OC (I/OS<sub>OC/OC</sub>) as an indicator for the favorability of chemical transformation inside an indoor microenvironment. The Total Respiratory Deposition Dose (TRDD), calculated using International Commission on Radiological Protection(ICRP) respiratory model, of EC was higher (> 0.030 µg/min) in indoor microenvironments with indoor sources present. The residential microenvironments with tiny volumes showed maximum favourability of the OC transformation to SOC. The study quantified health effects by calculating the number of passively smoked cigarettes (PSC). Number of PSC was > 2 for lung cancer and cardiovascular mortality in most of the studied locations.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"82 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-025-09476-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This research examined the composition of PM2.5, focusing on elemental carbon (EC), and organic carbon (OC), in six distinct indoor microenvironments (IMEs) and their associated outdoor locations (ODs). Four of the IMEs were located within the academic campus, Indian Institute of Technology Bombay (IITB), while two were situated within 500 m of IITB. Total carbon (TC = OC + EC) constituted 24.49–45.28% of indoor PM2.5 and 22.87–38.64% of outdoor PM2.5. Generally, the campus IMEs exhibited lower average PM concentrations compared to outdoor levels, with the dining room (IME4) being an exception. Indoor secondary organic carbon (ISOC) exceeded outdoor secondary organic carbon (OSOC) in all IMEs, apart from the library (IME3). All EC originated from outdoor sources in two campus-based IMEs—the hostel room (IME1) and the laboratory (IME2). IME4 and IME5 had over 30% of EC generated from indoor sources. OC2 and OC3 comprised over 70% of OC in IME4 and IME5. The study used the indoor-to-outdoor ratio of SOC/OC (I/OSOC/OC) as an indicator for the favorability of chemical transformation inside an indoor microenvironment. The Total Respiratory Deposition Dose (TRDD), calculated using International Commission on Radiological Protection(ICRP) respiratory model, of EC was higher (> 0.030 µg/min) in indoor microenvironments with indoor sources present. The residential microenvironments with tiny volumes showed maximum favourability of the OC transformation to SOC. The study quantified health effects by calculating the number of passively smoked cigarettes (PSC). Number of PSC was > 2 for lung cancer and cardiovascular mortality in most of the studied locations.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.