Enhancing the Efficiency of In0.62Ga0.38N Solar Cells Using an InN Back Surface Field Layer: A Numerical Simulation Approach

IF 1.8 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Amine Hadjouni, Arslane Hatem Kacha, Zineb Benamara, Boudali Akkal
{"title":"Enhancing the Efficiency of In0.62Ga0.38N Solar Cells Using an InN Back Surface Field Layer: A Numerical Simulation Approach","authors":"Amine Hadjouni,&nbsp;Arslane Hatem Kacha,&nbsp;Zineb Benamara,&nbsp;Boudali Akkal","doi":"10.1134/S1063783425600396","DOIUrl":null,"url":null,"abstract":"<p>Indium gallium nitride (InGaN) solar cells have emerged as promising candidates in photovoltaic research due to their tunable direct bandgap, strong light absorption, and favorable electronic characteristics. This study presents a numerical analysis of a <i>p</i>-InGaN/<i>n</i>-InGaN solar cell configuration, both with and without an added back surface field (BSF) layer, using the SILVACO-ATLAS 2D device simulation tool. The basic solar cell structure without a BSF layer (Al//<i>p</i>-InGaN/<i>n</i>-InGaN/Ag) serves as a reference, while a highly doped indium nitride (InN) BSF layer at the rear contact interface contact in the enhanced version. The study explores how variations in the BSF layer, in addition to the thickness and doping levels of the buffer and absorber layers, influence on key performance metrics such as open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE). Findings reveal that the introduction of the InN BSF layer improves the PCE from 23.52 to 24.43%, with a corresponding rise in JSC from 36.91 to 38.05 mA/cm<sup>2</sup>, and VOC from 0.817 to 0.821 V. Furthermore, the quantum efficiency exceeds 78.32% over the 300–900 nm wavelength range. This work provides a comprehensive optimization approach and demonstrates that using an InN BSF layer can significantly enhance the efficiency of InGaN solar cells by mitigating recombination and improving carrier collection. The findings offer a pathway toward higher-efficiency InGaN-based solar cells, making this approach a promising candidate for future photovoltaic technologies in both terrestrial and space applications.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"67 6","pages":"443 - 454"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783425600396","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Indium gallium nitride (InGaN) solar cells have emerged as promising candidates in photovoltaic research due to their tunable direct bandgap, strong light absorption, and favorable electronic characteristics. This study presents a numerical analysis of a p-InGaN/n-InGaN solar cell configuration, both with and without an added back surface field (BSF) layer, using the SILVACO-ATLAS 2D device simulation tool. The basic solar cell structure without a BSF layer (Al//p-InGaN/n-InGaN/Ag) serves as a reference, while a highly doped indium nitride (InN) BSF layer at the rear contact interface contact in the enhanced version. The study explores how variations in the BSF layer, in addition to the thickness and doping levels of the buffer and absorber layers, influence on key performance metrics such as open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE), and quantum efficiency (QE). Findings reveal that the introduction of the InN BSF layer improves the PCE from 23.52 to 24.43%, with a corresponding rise in JSC from 36.91 to 38.05 mA/cm2, and VOC from 0.817 to 0.821 V. Furthermore, the quantum efficiency exceeds 78.32% over the 300–900 nm wavelength range. This work provides a comprehensive optimization approach and demonstrates that using an InN BSF layer can significantly enhance the efficiency of InGaN solar cells by mitigating recombination and improving carrier collection. The findings offer a pathway toward higher-efficiency InGaN-based solar cells, making this approach a promising candidate for future photovoltaic technologies in both terrestrial and space applications.

Abstract Image

利用InN后表面场层提高In0.62Ga0.38N太阳能电池效率的数值模拟方法
氮化铟镓(InGaN)太阳能电池由于其可调的直接带隙、强的光吸收和良好的电子特性而成为光伏研究的有前途的候选者。本研究利用SILVACO-ATLAS 2D器件仿真工具,对p-InGaN/n-InGaN太阳能电池结构进行了数值分析,包括有无添加后表面场(BSF)层。以没有BSF层(Al//p-InGaN/n-InGaN/Ag)的太阳能电池基本结构为参考,而在增强版中,高掺杂的氮化铟(InN) BSF层在背面接触界面接触。除了缓冲层和吸收层的厚度和掺杂水平外,该研究还探讨了BSF层的变化如何影响开路电压(VOC)、短路电流密度(JSC)、填充因子(FF)、功率转换效率(PCE)和量子效率(QE)等关键性能指标。结果表明,引入InN BSF层后,PCE从23.52%提高到24.43%,JSC从36.91提高到38.05 mA/cm2, VOC从0.817提高到0.821 V。此外,在300-900 nm波长范围内,量子效率超过78.32%。这项工作提供了一种全面的优化方法,并证明使用InN BSF层可以通过减少重组和改善载流子收集来显着提高InGaN太阳能电池的效率。这一发现为更高效率的基于ingan的太阳能电池提供了一条途径,使这种方法成为未来地面和空间应用光伏技术的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信