Microstructure Modification for Cu–TiB2 Composites by Ultrasonic Power-Assisted in Situ Casting

IF 3.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Zhifeng Liu, Siruo Zhang, Longjian Li, Zhirou Zhang, Zongning Chen, Ying Fu, Huijun Kang, Zhiqiang Cao, Enyu Guo, Tongmin Wang
{"title":"Microstructure Modification for Cu–TiB2 Composites by Ultrasonic Power-Assisted in Situ Casting","authors":"Zhifeng Liu,&nbsp;Siruo Zhang,&nbsp;Longjian Li,&nbsp;Zhirou Zhang,&nbsp;Zongning Chen,&nbsp;Ying Fu,&nbsp;Huijun Kang,&nbsp;Zhiqiang Cao,&nbsp;Enyu Guo,&nbsp;Tongmin Wang","doi":"10.1007/s40195-025-01888-0","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic vibration treatment (UVT) at varying power was successfully applied to the Cu–TiB<sub>2</sub> composite melt using a SiAlON ceramic sonotrode. The results indicate that TiB<sub>2</sub> particles are more evenly dispersed in the Cu matrix with increasing ultrasonic power, leading to improved mechanical properties of as-cast composites (≤ 1000 W). With 1000 W UVT, the distribution of TiB<sub>2</sub> particles becomes the remarkably uniform and well dispersed, with the size of TiB<sub>2</sub> particle aggregates decreasing from ~ 50 μm without UVT to ~ 5 μm. The ultimate tensile strength, yield strength, and elongation of the as-cast composite are 201 MPa, 85 MPa, and 28.6%, respectively, representing increases of 21.1%, 27.3%, and 43%, respectively, compared to the as-cast composite without UVT. However, when the power is increased to 1500 W, thermal effects are likely to emerge, and the ultrasonic attenuation effect is enhanced, resulting in the re-agglomeration of TiB<sub>2</sub> particles and a deterioration in performance. By quantitatively analyzing the relationships between sound pressure (<i>P</i><sub>k</sub>), sound energy density (<i>I</i>), sound pulse velocity (<i>V</i>), and ultrasonic power, the influence mechanism of ultrasonic power on the composite microstructure has been further elucidated and characterized. This study provides crucial guidance for the industrial application of UVT in the fabrication of Cu matrix composites.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 10","pages":"1765 - 1776"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-025-01888-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic vibration treatment (UVT) at varying power was successfully applied to the Cu–TiB2 composite melt using a SiAlON ceramic sonotrode. The results indicate that TiB2 particles are more evenly dispersed in the Cu matrix with increasing ultrasonic power, leading to improved mechanical properties of as-cast composites (≤ 1000 W). With 1000 W UVT, the distribution of TiB2 particles becomes the remarkably uniform and well dispersed, with the size of TiB2 particle aggregates decreasing from ~ 50 μm without UVT to ~ 5 μm. The ultimate tensile strength, yield strength, and elongation of the as-cast composite are 201 MPa, 85 MPa, and 28.6%, respectively, representing increases of 21.1%, 27.3%, and 43%, respectively, compared to the as-cast composite without UVT. However, when the power is increased to 1500 W, thermal effects are likely to emerge, and the ultrasonic attenuation effect is enhanced, resulting in the re-agglomeration of TiB2 particles and a deterioration in performance. By quantitatively analyzing the relationships between sound pressure (Pk), sound energy density (I), sound pulse velocity (V), and ultrasonic power, the influence mechanism of ultrasonic power on the composite microstructure has been further elucidated and characterized. This study provides crucial guidance for the industrial application of UVT in the fabrication of Cu matrix composites.

超声辅助原位铸造Cu-TiB2复合材料的显微组织改性
采用SiAlON陶瓷声纳电极,成功地对Cu-TiB2复合材料熔体进行了不同功率的超声振动处理(UVT)。结果表明:随着超声功率的增加,TiB2颗粒在Cu基体中的分散更加均匀,使铸态复合材料(≤1000 W)的力学性能得到改善;当UVT为1000 W时,TiB2颗粒的分布变得非常均匀和分散,TiB2颗粒聚集体的尺寸从未UVT时的~ 50 μm减小到~ 5 μm。铸态复合材料的极限抗拉强度、屈服强度和伸长率分别为201 MPa、85 MPa和28.6%,分别比未加UVT的铸态复合材料提高21.1%、27.3%和43%。但当功率增加到1500w时,很可能出现热效应,超声波衰减效应增强,导致TiB2颗粒重新团聚,性能下降。通过定量分析声压(Pk)、声能密度(I)、声脉冲速度(V)与超声功率之间的关系,进一步阐明和表征超声功率对复合材料微观结构的影响机理。该研究为UVT技术在铜基复合材料制备中的工业应用提供了重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信