Identification of Key Propagation Nodes in Complex Networks Based on Weighted Multi-Feature Fusion and Approximate Influence Radius

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Haoming Guo, Xuefeng Yan, Juping Zhang
{"title":"Identification of Key Propagation Nodes in Complex Networks Based on Weighted Multi-Feature Fusion and Approximate Influence Radius","authors":"Haoming Guo,&nbsp;Xuefeng Yan,&nbsp;Juping Zhang","doi":"10.1007/s10955-025-03482-1","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying key propagation nodes in complex networks is an important research topic. We propose a new gravity model based on weighted multi-feature fusion and approximate influence radius (WMGM) to identify key propagation nodes. The core of this method is to first determine the approximate influence radius of nodes based on node similarity and network structure. Secondly, the normalized maximum eigenvector was introduced, and the element value of the eigenvector was regarded as the node weight value. Then, the K-shell value, degree value, and PageRank centrality of the node are fused, and the fused value is used as the mass of the node. Finally, based on the multi-feature fusion gravity model with weight attribute, the interaction force between nodes was calculated, and the importance score of nodes was determined by accumulating the interaction force of all nodes within the approximate influence radius. The WMGM method is compared with the classical centrality methods, the similar methods, and the state-of-the-art methods on 10 different real datasets. The experimental results show that the WMGM method can effectively identify the top 10 critical nodes in different networks, and the top 200 identified nodes are highly similar to the standard ranking results. In addition, the WMGM achieves high node ranking accuracy across all 10 datasets, attaining the best overall performance on 80% of them.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03482-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying key propagation nodes in complex networks is an important research topic. We propose a new gravity model based on weighted multi-feature fusion and approximate influence radius (WMGM) to identify key propagation nodes. The core of this method is to first determine the approximate influence radius of nodes based on node similarity and network structure. Secondly, the normalized maximum eigenvector was introduced, and the element value of the eigenvector was regarded as the node weight value. Then, the K-shell value, degree value, and PageRank centrality of the node are fused, and the fused value is used as the mass of the node. Finally, based on the multi-feature fusion gravity model with weight attribute, the interaction force between nodes was calculated, and the importance score of nodes was determined by accumulating the interaction force of all nodes within the approximate influence radius. The WMGM method is compared with the classical centrality methods, the similar methods, and the state-of-the-art methods on 10 different real datasets. The experimental results show that the WMGM method can effectively identify the top 10 critical nodes in different networks, and the top 200 identified nodes are highly similar to the standard ranking results. In addition, the WMGM achieves high node ranking accuracy across all 10 datasets, attaining the best overall performance on 80% of them.

Abstract Image

基于加权多特征融合和近似影响半径的复杂网络关键传播节点识别
复杂网络中关键传播节点的识别是一个重要的研究课题。提出了一种基于加权多特征融合和近似影响半径(WMGM)的重力模型来识别关键传播节点。该方法的核心是首先根据节点相似度和网络结构确定节点的近似影响半径。其次,引入归一化最大特征向量,并将特征向量的元素值作为节点权值;然后将节点的K-shell值、度值和PageRank中心性进行融合,将融合后的值作为节点的质量。最后,基于带权重属性的多特征融合重力模型,计算节点间的相互作用力,通过对近似影响半径内所有节点的相互作用力进行累加,确定节点的重要度得分。在10个不同的真实数据集上,将WMGM方法与经典中心性方法、相似方法和最先进的方法进行了比较。实验结果表明,WMGM方法可以有效地识别出不同网络中的前10个关键节点,识别出的前200个节点与标准排序结果高度相似。此外,WMGM在所有10个数据集上都达到了很高的节点排名精度,在80%的数据集上获得了最佳的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信