Brownian Motion in the \({\varvec{p}}\) -Adic Integers is a Limit of Discrete Time Random Walks

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Tyler Pierce, David Weisbart
{"title":"Brownian Motion in the \\({\\varvec{p}}\\) -Adic Integers is a Limit of Discrete Time Random Walks","authors":"Tyler Pierce,&nbsp;David Weisbart","doi":"10.1007/s10955-025-03474-1","DOIUrl":null,"url":null,"abstract":"<div><p>Vladimirov defined an operator on balls in <span>\\(\\mathbb {Q}_{p}\\)</span>, the <i>p</i>-adic numbers, analogous to the Laplace operator in the real setting. Kochubei later gave a probabilistic interpretation of this operator. The Vladimirov–Kochubei operator generates a real-time diffusion process in the ring of <i>p</i>-adic integers, a Brownian motion in <span>\\(\\mathbb {Z}_{p}\\)</span>. The current work proves that this process is a limit of discrete-time random walks. It motivates the construction of the Vladimirov–Kochubei operator, provides further intuition about ultrametric diffusion, and gives an example of the weak convergence of stochastic processes in a profinite group.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03474-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03474-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vladimirov defined an operator on balls in \(\mathbb {Q}_{p}\), the p-adic numbers, analogous to the Laplace operator in the real setting. Kochubei later gave a probabilistic interpretation of this operator. The Vladimirov–Kochubei operator generates a real-time diffusion process in the ring of p-adic integers, a Brownian motion in \(\mathbb {Z}_{p}\). The current work proves that this process is a limit of discrete-time random walks. It motivates the construction of the Vladimirov–Kochubei operator, provides further intuition about ultrametric diffusion, and gives an example of the weak convergence of stochastic processes in a profinite group.

\({\varvec{p}}\) -进整数中的布朗运动是离散时间随机游走的极限
Vladimirov在\(\mathbb {Q}_{p}\)中定义了一个p进数球上的算子,类似于实数中的拉普拉斯算子。Kochubei后来给出了这个算子的概率解释。Vladimirov-Kochubei算子在p进整数环中生成一个实时扩散过程,即\(\mathbb {Z}_{p}\)中的布朗运动。目前的工作证明了这一过程是离散时间随机游走的一个极限。它激发了Vladimirov-Kochubei算子的构造,提供了关于超度量扩散的进一步直观,并给出了一个无限群中随机过程弱收敛的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信