{"title":"Damage Assessment of Polyamide-Based Woven Composites Using Multi-Directional Lamb Waves After Fatigue or Impact Loading","authors":"Nada Miqoi, Pascal Pomarède, Fodil Meraghni, Nico Félicien Declercq, Stéphane Delalande","doi":"10.1007/s10443-025-10343-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel experimental methodology designed to assess damage in woven glass fibers reinforced polyamide 6,6/6 composites, specifically subjected to low-velocity impact and cyclic tensile loading. Conventional ultrasonic testing techniques often fail to detect subtle material degradation, particularly when dealing with barely visible impact damage (BVID), which can go unnoticed but still significantly compromise structural integrity. In contrast, the proposed approach utilizes multi-directional ultrasonic Lamb wave analysis, a more advanced technique that offers greater sensitivity and precision in identifying damage at various stages of the composite’s lifespan. In this work, a damage indicator is defined based on the velocity profile of Lamb waves, which are sensitive to changes in material properties such as stiffness degradation. The Lamb wave-based methodology is rigorously validated through detailed comparisons with X-ray tomography. These comparisons reveal strong correlations between the two techniques, highlighting the effectiveness of the proposed ultrasonic approach in detecting BVID. Moreover, the study demonstrates that this methodology is not only highly sensitive but also scalable, making it suitable for industrial applications where automated inspection of composite components is essential. The proposed method offers a significant advancement in non-destructive testing (NDT) techniques based on Lamb wave diagnostic tools in composite material testing.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 4","pages":"1559 - 1577"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10443-025-10343-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-025-10343-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel experimental methodology designed to assess damage in woven glass fibers reinforced polyamide 6,6/6 composites, specifically subjected to low-velocity impact and cyclic tensile loading. Conventional ultrasonic testing techniques often fail to detect subtle material degradation, particularly when dealing with barely visible impact damage (BVID), which can go unnoticed but still significantly compromise structural integrity. In contrast, the proposed approach utilizes multi-directional ultrasonic Lamb wave analysis, a more advanced technique that offers greater sensitivity and precision in identifying damage at various stages of the composite’s lifespan. In this work, a damage indicator is defined based on the velocity profile of Lamb waves, which are sensitive to changes in material properties such as stiffness degradation. The Lamb wave-based methodology is rigorously validated through detailed comparisons with X-ray tomography. These comparisons reveal strong correlations between the two techniques, highlighting the effectiveness of the proposed ultrasonic approach in detecting BVID. Moreover, the study demonstrates that this methodology is not only highly sensitive but also scalable, making it suitable for industrial applications where automated inspection of composite components is essential. The proposed method offers a significant advancement in non-destructive testing (NDT) techniques based on Lamb wave diagnostic tools in composite material testing.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.