Complete switching of transverse and longitudinal spin-photon coupling in silicon

IF 7.5 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Fang-Ge Li, Ranran Cai, Ze-Cheng Wei, Bao-Chuan Wang, Hai-Ou Li, Gang Cao, Guo-Ping Guo
{"title":"Complete switching of transverse and longitudinal spin-photon coupling in silicon","authors":"Fang-Ge Li,&nbsp;Ranran Cai,&nbsp;Ze-Cheng Wei,&nbsp;Bao-Chuan Wang,&nbsp;Hai-Ou Li,&nbsp;Gang Cao,&nbsp;Guo-Ping Guo","doi":"10.1007/s11433-025-2695-7","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon spin qubits have emerged as one of the most promising platforms for quantum computing. To achieve scalability, the spin-photon coupling in the frame of circuit-QED offers a reliable architecture that garners significant attention. Depending on the coupling mechanisms, spin-photon coupling is categorized into transverse (<i>g</i><sub><i>x</i></sub>) and longitudinal (<i>g</i><sub><i>z</i></sub>) components, each offering distinct advantages for operation and readout, respectively. In practical scenarios, <i>g</i><sub><i>x</i></sub> and <i>g</i><sub><i>z</i></sub> often coexist and interfere with each other. To enable on-demand separation of these two couplings, we propose an alternative scheme based on spin-orbit torque (SOT). By employing SOT to switch the magnetization of micromagnets, the symmetry of the stray fields surrounding the spin qubit is modified, naturally isolating <i>g</i><sub><i>x</i></sub> and <i>g</i><sub><i>z</i></sub>. Furthermore, within this SOT scheme, we demonstrate that the dynamic longitudinal coupling (<i>g</i><span>\n <sup>dy</sup><sub><i>z</i></sub>\n \n </span>) can also be fully decoupled from <i>g</i><sub><i>x</i></sub> through applying appropriate parametric driving. Our results thus pave the way toward scalable silicon spin qubit architectures.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 9","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-025-2695-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon spin qubits have emerged as one of the most promising platforms for quantum computing. To achieve scalability, the spin-photon coupling in the frame of circuit-QED offers a reliable architecture that garners significant attention. Depending on the coupling mechanisms, spin-photon coupling is categorized into transverse (gx) and longitudinal (gz) components, each offering distinct advantages for operation and readout, respectively. In practical scenarios, gx and gz often coexist and interfere with each other. To enable on-demand separation of these two couplings, we propose an alternative scheme based on spin-orbit torque (SOT). By employing SOT to switch the magnetization of micromagnets, the symmetry of the stray fields surrounding the spin qubit is modified, naturally isolating gx and gz. Furthermore, within this SOT scheme, we demonstrate that the dynamic longitudinal coupling (g dyz ) can also be fully decoupled from gx through applying appropriate parametric driving. Our results thus pave the way toward scalable silicon spin qubit architectures.

硅中横向和纵向自旋光子耦合的完全开关
硅自旋量子比特已经成为最有前途的量子计算平台之一。为了实现可扩展性,电路qed框架中的自旋光子耦合提供了一个值得关注的可靠架构。根据耦合机制的不同,自旋光子耦合分为横向(gx)和纵向(gz)组件,每个组件分别提供不同的操作和读出优势。在实际场景中,gx和gz经常共存,相互干扰。为了实现这两种耦合的按需分离,我们提出了一种基于自旋轨道扭矩(SOT)的替代方案。通过使用SOT来切换微磁体的磁化强度,自旋量子比特周围的杂散场的对称性被修改,自然地隔离了gx和gz。此外,在该SOT方案中,我们证明了动态纵向耦合(gdyz)也可以通过应用适当的参数驱动与gx完全解耦。因此,我们的研究结果为可扩展的硅自旋量子比特架构铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信