A. M. Savel’ev, V. A. Savel’eva, A. N. Tarasenko, S. A. Torokhov, D. V. Novakovskii
{"title":"Complex Multicomponent Surrogates of Commercial Aircraft Kerosene Fuels: Simulation of Main Physical and Chemical Properties","authors":"A. M. Savel’ev, V. A. Savel’eva, A. N. Tarasenko, S. A. Torokhov, D. V. Novakovskii","doi":"10.1134/S0040601525700247","DOIUrl":null,"url":null,"abstract":"<p>Implementation of modern methods for the design and upgrading of low-emission combustion chambers for gas turbine engines requires performance of a wide variety of computational experiments with appropriate fuel surrogates, which are hydrocarbon compositions capable of simulating the essential physical and chemical characteristics of the fuel. Complex multicomponent surrogates of commercial aviation kerosene fuels have been developed in this work. Surrogates consist of hydrocarbons from the main structural classes of compounds specific for aviation kerosene fuels and reproduce the key physical and chemical characteristics of fuels, such as the H/C ratio, molecular weight, density, lower heating value, and heat of evaporation. The surrogates were tested against temperature-independent and temperature-dependent characteristics of Jet A, Jet A-1, and TS-1 fuels, including their distillation curves. Surrogates have been identified, which offer the best agreement with the published data on temperature-dependent and temperature-independent characteristics of Jet A, Jet A-1, and TS-1 fuels.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 7","pages":"527 - 549"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601525700247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Implementation of modern methods for the design and upgrading of low-emission combustion chambers for gas turbine engines requires performance of a wide variety of computational experiments with appropriate fuel surrogates, which are hydrocarbon compositions capable of simulating the essential physical and chemical characteristics of the fuel. Complex multicomponent surrogates of commercial aviation kerosene fuels have been developed in this work. Surrogates consist of hydrocarbons from the main structural classes of compounds specific for aviation kerosene fuels and reproduce the key physical and chemical characteristics of fuels, such as the H/C ratio, molecular weight, density, lower heating value, and heat of evaporation. The surrogates were tested against temperature-independent and temperature-dependent characteristics of Jet A, Jet A-1, and TS-1 fuels, including their distillation curves. Surrogates have been identified, which offer the best agreement with the published data on temperature-dependent and temperature-independent characteristics of Jet A, Jet A-1, and TS-1 fuels.