Complex Multicomponent Surrogates of Commercial Aircraft Kerosene Fuels: Simulation of Main Physical and Chemical Properties

IF 1 Q4 ENERGY & FUELS
A. M. Savel’ev, V. A. Savel’eva, A. N. Tarasenko, S. A. Torokhov, D. V. Novakovskii
{"title":"Complex Multicomponent Surrogates of Commercial Aircraft Kerosene Fuels: Simulation of Main Physical and Chemical Properties","authors":"A. M. Savel’ev,&nbsp;V. A. Savel’eva,&nbsp;A. N. Tarasenko,&nbsp;S. A. Torokhov,&nbsp;D. V. Novakovskii","doi":"10.1134/S0040601525700247","DOIUrl":null,"url":null,"abstract":"<p>Implementation of modern methods for the design and upgrading of low-emission combustion chambers for gas turbine engines requires performance of a wide variety of computational experiments with appropriate fuel surrogates, which are hydrocarbon compositions capable of simulating the essential physical and chemical characteristics of the fuel. Complex multicomponent surrogates of commercial aviation kerosene fuels have been developed in this work. Surrogates consist of hydrocarbons from the main structural classes of compounds specific for aviation kerosene fuels and reproduce the key physical and chemical characteristics of fuels, such as the H/C ratio, molecular weight, density, lower heating value, and heat of evaporation. The surrogates were tested against temperature-independent and temperature-dependent characteristics of Jet A, Jet A-1, and TS-1 fuels, including their distillation curves. Surrogates have been identified, which offer the best agreement with the published data on temperature-dependent and temperature-independent characteristics of Jet A, Jet A-1, and TS-1 fuels.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 7","pages":"527 - 549"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601525700247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Implementation of modern methods for the design and upgrading of low-emission combustion chambers for gas turbine engines requires performance of a wide variety of computational experiments with appropriate fuel surrogates, which are hydrocarbon compositions capable of simulating the essential physical and chemical characteristics of the fuel. Complex multicomponent surrogates of commercial aviation kerosene fuels have been developed in this work. Surrogates consist of hydrocarbons from the main structural classes of compounds specific for aviation kerosene fuels and reproduce the key physical and chemical characteristics of fuels, such as the H/C ratio, molecular weight, density, lower heating value, and heat of evaporation. The surrogates were tested against temperature-independent and temperature-dependent characteristics of Jet A, Jet A-1, and TS-1 fuels, including their distillation curves. Surrogates have been identified, which offer the best agreement with the published data on temperature-dependent and temperature-independent characteristics of Jet A, Jet A-1, and TS-1 fuels.

Abstract Image

商用煤油燃料的复杂多组分替代物:主要物理和化学性质的模拟
采用现代方法设计和升级燃气涡轮发动机的低排放燃烧室,需要使用适当的替代燃料进行各种计算实验,这些替代燃料是能够模拟燃料基本物理和化学特性的碳氢化合物成分。本研究开发了复杂的多组分商用航空煤油替代燃料。替代物由航空煤油燃料专用化合物的主要结构类别的碳氢化合物组成,并再现燃料的关键物理和化学特性,例如H/C比、分子量、密度、较低的热值和蒸发热。分别对Jet A、Jet A-1和TS-1燃料的温度无关和温度相关特性进行了测试,包括它们的蒸馏曲线。已确定的替代品与已发表的关于Jet A、Jet A-1和TS-1燃料的温度依赖和温度独立特性的数据最吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
20.00%
发文量
94
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信