Constructing adsorption site-enhanced ZnWO4/Li6W2O9 heterojunction sensing electrode for efficient performance in impedancemetric NO2 sensor

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Teng-Teng Zhao, Wei-Wei Meng, Yue-Hua Li, Ming-Yong Wang, Ling Wang, Zhang-Xing He, Lei Dai
{"title":"Constructing adsorption site-enhanced ZnWO4/Li6W2O9 heterojunction sensing electrode for efficient performance in impedancemetric NO2 sensor","authors":"Teng-Teng Zhao,&nbsp;Wei-Wei Meng,&nbsp;Yue-Hua Li,&nbsp;Ming-Yong Wang,&nbsp;Ling Wang,&nbsp;Zhang-Xing He,&nbsp;Lei Dai","doi":"10.1007/s12598-025-03296-w","DOIUrl":null,"url":null,"abstract":"<div><p>The application of NO<sub>2</sub> sensor reduces the emission of NO<sub>2</sub> from the industry and automotive vehicles. However, insufficient electrocatalytic activity and adsorption to NO<sub>2</sub> of sensing electrode (SE) limit the sensitivity increment of NO<sub>2</sub> sensor. Thus, a novel ZnWO<sub>4</sub>/Li<sub>6</sub>W<sub>2</sub>O<sub>9</sub> heterojunction SE is constructed by molten salt method for the zirconia-based impedancemetric NO<sub>2</sub> sensor. The influence of the ZnWO<sub>4</sub>/Li<sub>6</sub>W<sub>2</sub>O<sub>9</sub> ratio on the performance of the sensor is investigated. The results show that Li<sub>6</sub>W<sub>2</sub>O<sub>9</sub> in-situ formation on the surface of the ZnWO<sub>4</sub> in LiNO<sub>3</sub> molten at a low temperature of 300 °C. The incorporation of Li<sub>6</sub>W<sub>2</sub>O<sub>9</sub> enhances both the adsorption property and electrocatalytic activity of the SE, simultaneously, resulting in a significant increase in the sensitivity of sensor. The sensitivity increases gradually with the increasing incorporation of Li<sub>6</sub>W<sub>2</sub>O<sub>9</sub>. The sensitivity of ZnWO<sub>4</sub>/37.5% Li<sub>6</sub>W<sub>2</sub>O<sub>9</sub> sensor is significantly increased by 124% compared to the pristine ZnWO<sub>4</sub> sensor and exhibits the largest sensitivity of 25.19 (°) decade<sup>−1</sup> at 400 °C. Moreover, the ZnWO<sub>4</sub>/Li<sub>6</sub>W<sub>2</sub>O<sub>9</sub> sensor also displays excellent selectivity, long-term stability, and repeatability. The introduction of in-situ formation by molten salt method is an effective strategy to develop gas sensors with large sensitivity.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 8","pages":"5594 - 5606"},"PeriodicalIF":11.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03296-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The application of NO2 sensor reduces the emission of NO2 from the industry and automotive vehicles. However, insufficient electrocatalytic activity and adsorption to NO2 of sensing electrode (SE) limit the sensitivity increment of NO2 sensor. Thus, a novel ZnWO4/Li6W2O9 heterojunction SE is constructed by molten salt method for the zirconia-based impedancemetric NO2 sensor. The influence of the ZnWO4/Li6W2O9 ratio on the performance of the sensor is investigated. The results show that Li6W2O9 in-situ formation on the surface of the ZnWO4 in LiNO3 molten at a low temperature of 300 °C. The incorporation of Li6W2O9 enhances both the adsorption property and electrocatalytic activity of the SE, simultaneously, resulting in a significant increase in the sensitivity of sensor. The sensitivity increases gradually with the increasing incorporation of Li6W2O9. The sensitivity of ZnWO4/37.5% Li6W2O9 sensor is significantly increased by 124% compared to the pristine ZnWO4 sensor and exhibits the largest sensitivity of 25.19 (°) decade−1 at 400 °C. Moreover, the ZnWO4/Li6W2O9 sensor also displays excellent selectivity, long-term stability, and repeatability. The introduction of in-situ formation by molten salt method is an effective strategy to develop gas sensors with large sensitivity.

Graphical abstract

构建吸附位增强ZnWO4/Li6W2O9异质结传感电极,提高阻抗型二氧化氮传感器的性能
二氧化氮传感器的应用减少了工业和汽车的二氧化氮排放。然而,感应电极(SE)对NO2的电催化活性和吸附能力不足限制了NO2传感器的灵敏度提高。因此,采用熔盐法构建了一种新型的ZnWO4/Li6W2O9异质结SE,用于氧化锆基阻抗型二氧化氮传感器。研究了ZnWO4/Li6W2O9配比对传感器性能的影响。结果表明,Li6W2O9在低温300℃的LiNO3熔融条件下在ZnWO4表面原位形成。Li6W2O9的掺入提高了SE的吸附性能和电催化活性,同时显著提高了传感器的灵敏度。随着Li6W2O9掺入量的增加,灵敏度逐渐提高。ZnWO4/37.5% Li6W2O9传感器的灵敏度比原始ZnWO4传感器显著提高了124%,在400°C时灵敏度达到25.19(°)decade - 1。此外,ZnWO4/Li6W2O9传感器还表现出优异的选择性、长期稳定性和可重复性。熔盐法引入原位地层是开发大灵敏度气体传感器的有效策略。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信