Amanda L. Gomez, Anaïs M.S. Hallett, Kevin D. Easterbrook, Amanda M. Miller, Hans D. Osthoff
{"title":"Measurement of Henry’s law solubility and liquid-phase loss rate constants for acryloyl peroxynitrate (APAN) in deionized water at room temperature","authors":"Amanda L. Gomez, Anaïs M.S. Hallett, Kevin D. Easterbrook, Amanda M. Miller, Hans D. Osthoff","doi":"10.1007/s10874-025-09475-4","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Acryloyl peroxynitrate (APAN; molecular formula H<sub>2</sub>C = CHC(O)O<sub>2</sub>NO<sub>2</sub>) is a trace gas found in the troposphere in elevated concentration in biomass burning plumes and downwind from petrochemical plants. Owing to the reactivity of the unsaturated side chain, its synthesis poses a challenge to laboratory studies and the calibration of field instruments alike. Here, the generation of APAN from photolysis at 285 nm of acrolein in air in the presence of NO<sub>x</sub> (= NO + NO<sub>2</sub>) is described. Formation of APAN is primarily initiated by the abstraction of the aldehydic hydrogen by the hydroxyl radical (OH). The output of APAN was increased by the addition of acetone, which acts as a source of OH radicals. Photochemically generated APAN was used to measure its room temperature Henry’s law solubility (<span>\\(\\:{H}_{\\text{S}}^{cp}\\)</span>) and liquid phase loss rate (<i>k</i><sub>l</sub>) constants in deionized water using a jacketed bubble column apparatus. The measured <span>\\(\\:{H}_{\\text{S}}^{cp}\\)</span> value for APAN was (2.67 ± 0.10) M atm<sup>− 1</sup>, where the error is at the 1σ level, and was on par with propionyl peroxynitrate (PPN). The <i>k</i><sub>l</sub> value of APAN in deionized water was determined to be (2.7 ± 0.4)×10<sup>− 4</sup> s<sup>− 1</sup>, which is of similar magnitude as other PAN-type compounds.</p>\n </div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"82 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-025-09475-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Acryloyl peroxynitrate (APAN; molecular formula H2C = CHC(O)O2NO2) is a trace gas found in the troposphere in elevated concentration in biomass burning plumes and downwind from petrochemical plants. Owing to the reactivity of the unsaturated side chain, its synthesis poses a challenge to laboratory studies and the calibration of field instruments alike. Here, the generation of APAN from photolysis at 285 nm of acrolein in air in the presence of NOx (= NO + NO2) is described. Formation of APAN is primarily initiated by the abstraction of the aldehydic hydrogen by the hydroxyl radical (OH). The output of APAN was increased by the addition of acetone, which acts as a source of OH radicals. Photochemically generated APAN was used to measure its room temperature Henry’s law solubility (\(\:{H}_{\text{S}}^{cp}\)) and liquid phase loss rate (kl) constants in deionized water using a jacketed bubble column apparatus. The measured \(\:{H}_{\text{S}}^{cp}\) value for APAN was (2.67 ± 0.10) M atm− 1, where the error is at the 1σ level, and was on par with propionyl peroxynitrate (PPN). The kl value of APAN in deionized water was determined to be (2.7 ± 0.4)×10− 4 s− 1, which is of similar magnitude as other PAN-type compounds.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.