Failure Analyses of Cylindrical Lithium-Ion Batteries Under Dynamic Loading Based on Detailed Computational Model

IF 2.7 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huifeng Xi, Guicheng Zhao, Shuo Wang, Junkui Li, Linghui He, Bao Yang
{"title":"Failure Analyses of Cylindrical Lithium-Ion Batteries Under Dynamic Loading Based on Detailed Computational Model","authors":"Huifeng Xi,&nbsp;Guicheng Zhao,&nbsp;Shuo Wang,&nbsp;Junkui Li,&nbsp;Linghui He,&nbsp;Bao Yang","doi":"10.1007/s10338-024-00550-z","DOIUrl":null,"url":null,"abstract":"<div><p>Electric vehicles, powered by electricity stored in a battery pack, are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly. However, thermal runaway is the key scientific problem in battery safety research, which can cause fire and even lead to battery explosion under impact loading. In this work, a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established. The detailed computational model, including the anode, cathode, separator, winding, and battery casing, is then developed under the indentation condition. The failure criteria are subsequently established based on the force–displacement curve and the separator failure. Two methods for improving the anti-short circuit ability are proposed. Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"38 3","pages":"526 - 538"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00550-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electric vehicles, powered by electricity stored in a battery pack, are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly. However, thermal runaway is the key scientific problem in battery safety research, which can cause fire and even lead to battery explosion under impact loading. In this work, a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established. The detailed computational model, including the anode, cathode, separator, winding, and battery casing, is then developed under the indentation condition. The failure criteria are subsequently established based on the force–displacement curve and the separator failure. Two methods for improving the anti-short circuit ability are proposed. Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.

基于详细计算模型的圆柱形锂离子电池动态载荷失效分析
由于储能技术的快速发展和相关电机系统的环保性,以电池组存储的电力为动力的电动汽车正在迅速发展。然而,热失控是电池安全研究中的关键科学问题,在冲击载荷作用下,热失控会引起电池火灾甚至爆炸。本文建立了一个详细的模拟18650圆柱电池力学变形和预测短路发生的计算模型。在压痕条件下,建立了包括阳极、阴极、分离器、绕组和电池外壳在内的详细计算模型。然后根据力-位移曲线和分离器的破坏情况建立了破坏准则。提出了两种提高抗短路能力的方法。结果显示了短路的三种原因和部件的失效顺序,揭示了动载荷下火灾比准静态载荷下火灾更严重的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信