Exploring Neimark-Sacker Bifurcation and Chaos Control in a Tri-species Discrete-Time Model

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Sujay Goldar, Sk. Sarif Hassan, Krishna Pada Das, Ahmed A. Mohsen, Dahlia Khaled Bahlool, Qasem Al-Mdallal, Sourav Rana, Vikas Gupta, Purnendu Sardar
{"title":"Exploring Neimark-Sacker Bifurcation and Chaos Control in a Tri-species Discrete-Time Model","authors":"Sujay Goldar,&nbsp;Sk. Sarif Hassan,&nbsp;Krishna Pada Das,&nbsp;Ahmed A. Mohsen,&nbsp;Dahlia Khaled Bahlool,&nbsp;Qasem Al-Mdallal,&nbsp;Sourav Rana,&nbsp;Vikas Gupta,&nbsp;Purnendu Sardar","doi":"10.1007/s40995-025-01790-5","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a three-dimensional discrete-time ecological model to elucidate the intricate dynamics among three distinct species within an ecosystem. This approach extends traditional two-dimensional models, offering a more comprehensive perspective on ecological interactions. We identify all biologically feasible equilibria and perform a local stability analysis for each equilibrium point. Through bifurcation analysis (Neimark-Sacker and period-doubling bifurcations), we successfully demonstrate chaotic attractors via period doubling in the discrete-time model and implement chaos control through numerical simulations. By integrating this mathematical model, we derive ecological insights that contribute to informed conservation and management strategies, promoting sustainable biodiversity preservation.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 4","pages":"1075 - 1095"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01790-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a three-dimensional discrete-time ecological model to elucidate the intricate dynamics among three distinct species within an ecosystem. This approach extends traditional two-dimensional models, offering a more comprehensive perspective on ecological interactions. We identify all biologically feasible equilibria and perform a local stability analysis for each equilibrium point. Through bifurcation analysis (Neimark-Sacker and period-doubling bifurcations), we successfully demonstrate chaotic attractors via period doubling in the discrete-time model and implement chaos control through numerical simulations. By integrating this mathematical model, we derive ecological insights that contribute to informed conservation and management strategies, promoting sustainable biodiversity preservation.

三种离散时间模型的neimmark - sacker分岔与混沌控制研究
本文提出了一个三维离散时间生态模型来阐明生态系统中三个不同物种之间复杂的动态。这种方法扩展了传统的二维模型,为生态相互作用提供了更全面的视角。我们确定了所有生物上可行的平衡,并对每个平衡点进行了局部稳定性分析。通过分岔分析(neimmark - sacker分岔和倍周期分岔),我们成功地证明了离散时间模型中通过周期加倍的混沌吸引子,并通过数值模拟实现了混沌控制。通过整合这一数学模型,我们得出了有助于制定明智的保护和管理策略的生态学见解,促进了可持续的生物多样性保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信