A bonded polyhedral DEM model for irregular cemented granular materials based on energy-conserving contact theory

IF 2.9 3区 工程技术
Ting Qiao, Siqiang Wang, Shunying Ji
{"title":"A bonded polyhedral DEM model for irregular cemented granular materials based on energy-conserving contact theory","authors":"Ting Qiao,&nbsp;Siqiang Wang,&nbsp;Shunying Ji","doi":"10.1007/s10035-025-01558-z","DOIUrl":null,"url":null,"abstract":"<div><p>Cemented granular materials, as unique granular substances possessing both permeability and load-bearing characteristics, have found extensive applications in chemical catalysis and geological engineering, and other fields. Given the significant impact of skeleton particle shape on the mechanical properties of cemented granular materials, this paper proposes a bonded polyhedral discrete element method adaptable to arbitrary skeleton particle shapes. Within this method, the adhesive surface is constructed from the contact geometry, and the interaction between particles of different shapes is described by employing an energy-conserving contact model based on strain energy density. The spring-damping model and bilinear constitutive model are utilized to characterize the elastic behavior and damage fracture behavior of cement, respectively. Moreover, the influence of skeleton particle shape on cemented granular materials is elucidated through both mesoscopic and macroscopic analyses using the proposed model. Mesoscopic results indicate that the area of the adhesive surface is a critical factor influencing the destructive force of bonding units. Variations in particle shape cause particles with identical volume and density to form adhesive surfaces with differing shapes and areas under the same conditions, leading to varied destructive forces in the bonding units. The macroscopic results reveal that both the sphericity and aspect ratio of the skeleton particles impact the strength of the cemented granular material. This effect predominantly arises from the differences in the coordination number of the accumulation bodies formed by skeleton particles of varying shapes.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01558-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cemented granular materials, as unique granular substances possessing both permeability and load-bearing characteristics, have found extensive applications in chemical catalysis and geological engineering, and other fields. Given the significant impact of skeleton particle shape on the mechanical properties of cemented granular materials, this paper proposes a bonded polyhedral discrete element method adaptable to arbitrary skeleton particle shapes. Within this method, the adhesive surface is constructed from the contact geometry, and the interaction between particles of different shapes is described by employing an energy-conserving contact model based on strain energy density. The spring-damping model and bilinear constitutive model are utilized to characterize the elastic behavior and damage fracture behavior of cement, respectively. Moreover, the influence of skeleton particle shape on cemented granular materials is elucidated through both mesoscopic and macroscopic analyses using the proposed model. Mesoscopic results indicate that the area of the adhesive surface is a critical factor influencing the destructive force of bonding units. Variations in particle shape cause particles with identical volume and density to form adhesive surfaces with differing shapes and areas under the same conditions, leading to varied destructive forces in the bonding units. The macroscopic results reveal that both the sphericity and aspect ratio of the skeleton particles impact the strength of the cemented granular material. This effect predominantly arises from the differences in the coordination number of the accumulation bodies formed by skeleton particles of varying shapes.

Graphical Abstract

Abstract Image

基于节能接触理论的不规则胶结颗粒材料黏结多面体DEM模型
胶结颗粒材料作为一种具有渗透性和承载性的独特颗粒物质,在化学催化和地质工程等领域有着广泛的应用。鉴于骨架颗粒形状对胶结颗粒材料力学性能的重要影响,本文提出了一种适用于任意骨架颗粒形状的粘结多面体离散元方法。该方法根据接触几何构造粘接表面,采用基于应变能密度的能量守恒接触模型描述不同形状颗粒之间的相互作用。采用弹簧-阻尼模型和双线性本构模型分别表征水泥的弹性行为和损伤断裂行为。此外,利用所建立的模型,通过细观和宏观分析,阐明骨架颗粒形状对胶结颗粒材料的影响。细观结果表明,粘结面面积是影响粘结单元破坏力的关键因素。颗粒形状的变化使体积和密度相同的颗粒在相同的条件下形成形状和面积不同的粘接面,从而导致粘接单元中破坏力的变化。宏观结果表明,骨架颗粒的球度和长径比都影响胶结颗粒材料的强度。这种效应主要是由不同形状的骨架颗粒所形成的堆积体的配位数不同引起的。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信