Bounds on Dao numbers and applications to regular local rings

IF 0.9 3区 数学 Q1 MATHEMATICS
Antonino Ficarra, Cleto B. Miranda-Neto, Douglas S. Queiroz
{"title":"Bounds on Dao numbers and applications to regular local rings","authors":"Antonino Ficarra,&nbsp;Cleto B. Miranda-Neto,&nbsp;Douglas S. Queiroz","doi":"10.1007/s10231-024-01537-w","DOIUrl":null,"url":null,"abstract":"<div><p>The so-called Dao numbers are a sort of measure of the asymptotic behaviour of full properties of certain product ideals in a Noetherian local ring <i>R</i> with infinite residue field and positive depth. In this paper, we answer a question of H. Dao on how to bound such numbers. The auxiliary tools range from Castelnuovo–Mumford regularity of appropriate graded structures to reduction numbers of the maximal ideal. In particular, we substantially improve previous results (and answer questions) by the authors. Finally, as an application of the theory of Dao numbers, we provide new characterizations of when <i>R</i> is regular; for instance, we show that this holds if and only if the maximal ideal of <i>R</i> can be generated by a <i>d</i>-sequence (in the sense of Huneke) if and only if the third Dao number of any (minimal) reduction of the maximal ideal vanishes.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1525 - 1539"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01537-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The so-called Dao numbers are a sort of measure of the asymptotic behaviour of full properties of certain product ideals in a Noetherian local ring R with infinite residue field and positive depth. In this paper, we answer a question of H. Dao on how to bound such numbers. The auxiliary tools range from Castelnuovo–Mumford regularity of appropriate graded structures to reduction numbers of the maximal ideal. In particular, we substantially improve previous results (and answer questions) by the authors. Finally, as an application of the theory of Dao numbers, we provide new characterizations of when R is regular; for instance, we show that this holds if and only if the maximal ideal of R can be generated by a d-sequence (in the sense of Huneke) if and only if the third Dao number of any (minimal) reduction of the maximal ideal vanishes.

刀数的界及其在正则局部环中的应用
所谓Dao数是对具有无限剩余域和正深度的noether局部环R中某些积理想的满性质的渐近行为的一种度量。在本文中,我们回答了H. Dao关于如何定界这类数的问题。辅助工具的范围从适当分级结构的Castelnuovo-Mumford正则性到最大理想的约简数。特别是,我们大大改进了作者以前的结果(并回答了问题)。最后,作为道数理论的一个应用,我们给出了R为正则时的新表征;例如,我们证明当且仅当R的最大理想可以由d序列(在Huneke意义上)生成时,当且仅当最大理想的任何(最小)约化的第三个Dao数消失时,这一点成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信