Antonino Ficarra, Cleto B. Miranda-Neto, Douglas S. Queiroz
{"title":"Bounds on Dao numbers and applications to regular local rings","authors":"Antonino Ficarra, Cleto B. Miranda-Neto, Douglas S. Queiroz","doi":"10.1007/s10231-024-01537-w","DOIUrl":null,"url":null,"abstract":"<div><p>The so-called Dao numbers are a sort of measure of the asymptotic behaviour of full properties of certain product ideals in a Noetherian local ring <i>R</i> with infinite residue field and positive depth. In this paper, we answer a question of H. Dao on how to bound such numbers. The auxiliary tools range from Castelnuovo–Mumford regularity of appropriate graded structures to reduction numbers of the maximal ideal. In particular, we substantially improve previous results (and answer questions) by the authors. Finally, as an application of the theory of Dao numbers, we provide new characterizations of when <i>R</i> is regular; for instance, we show that this holds if and only if the maximal ideal of <i>R</i> can be generated by a <i>d</i>-sequence (in the sense of Huneke) if and only if the third Dao number of any (minimal) reduction of the maximal ideal vanishes.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1525 - 1539"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01537-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The so-called Dao numbers are a sort of measure of the asymptotic behaviour of full properties of certain product ideals in a Noetherian local ring R with infinite residue field and positive depth. In this paper, we answer a question of H. Dao on how to bound such numbers. The auxiliary tools range from Castelnuovo–Mumford regularity of appropriate graded structures to reduction numbers of the maximal ideal. In particular, we substantially improve previous results (and answer questions) by the authors. Finally, as an application of the theory of Dao numbers, we provide new characterizations of when R is regular; for instance, we show that this holds if and only if the maximal ideal of R can be generated by a d-sequence (in the sense of Huneke) if and only if the third Dao number of any (minimal) reduction of the maximal ideal vanishes.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.