Expected Number of Jumps and the Number of Active Particles in TASEP

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paweł Hitczenko, Jacek Wesołowski
{"title":"Expected Number of Jumps and the Number of Active Particles in TASEP","authors":"Paweł Hitczenko,&nbsp;Jacek Wesołowski","doi":"10.1007/s10955-025-03483-0","DOIUrl":null,"url":null,"abstract":"<div><p>For a TASEP on <span>\\(\\mathbb Z\\)</span> with the step initial condition we identify limits as <span>\\(t\\rightarrow \\infty \\)</span> of the expected total number of jumps until time <span>\\(t&gt;0\\)</span> and the expected number of active particles at a time <i>t</i>. We also connect the two quantities proving that non-asymptotically, that is as a function of <span>\\(t&gt;0\\)</span>, the latter is the derivative of the former. Our approach builds on asymptotics derived by Rost and intensive use of the fact that the rightmost particle evolves according to the Poisson process.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03483-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03483-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For a TASEP on \(\mathbb Z\) with the step initial condition we identify limits as \(t\rightarrow \infty \) of the expected total number of jumps until time \(t>0\) and the expected number of active particles at a time t. We also connect the two quantities proving that non-asymptotically, that is as a function of \(t>0\), the latter is the derivative of the former. Our approach builds on asymptotics derived by Rost and intensive use of the fact that the rightmost particle evolves according to the Poisson process.

TASEP中预期跳跃数和活动粒子数
对于具有阶跃初始条件的\(\mathbb Z\)上的TASEP,我们确定了到时间\(t>0\)的期望跳跃总数和时间t的期望活跃粒子数的极限为\(t\rightarrow \infty \)。我们还将两个量连接起来,证明了非渐近性,即作为\(t>0\)的函数,后者是前者的导数。我们的方法建立在Rost导出的渐近性和密集使用的事实,即最右边的粒子根据泊松过程演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信