{"title":"Design and simulation of a hybrid deterministic lateral displacement and dielectrophoretic micro-device for bacterial separation from blood cells","authors":"Fahimeh Ghaedamini, Mohsen Rabbani","doi":"10.1007/s10404-025-02831-6","DOIUrl":null,"url":null,"abstract":"<div><p>Bacterial infections are a leading cause of mortality globally, and the timeliness of diagnosis is crucial for effective treatment. Traditional diagnostic methods, reliant on bacterial cultures, are often slow, leading to delays in treatment and increased mortality rates. To address delayed treatments, the study proposes a hybrid microfluidic device that employs deterministic lateral displacement (DLD) and dielectrophoresis (DEP) for rapid and continuous bacterial separation from blood cells. The research utilized COMSOL Multiphysics 5.6 to design and simulate the device, focusing on the optimization of various parameters such as pillar geometry, electrode geometry, fluid velocity, voltage, and DEP frequency. In order to calculate the separation efficiency, 120 particles along with the fluid were entered into the primary initial and the optimized hybrid device. The initial simulations yielded a separation efficiency of approximately 72% for bacteria and red blood cells (RBCs), and 100% for white blood cells (WBCs). After iterative optimization of the device’s design, including changes to the pillar geometries and electrode geometries and numbers, the separation efficiency for bacteria and RBCs was enhanced to 95%, while the efficiency for WBCs remained at 100%. These findings demonstrate the high efficiency of the designed microfluidic device in separating particles, indicating its potential to significantly reduce the time required for the detection of bacterial infections compared to conventional methods. The study presents a model of a microfluidic device that not only accelerates the diagnosis process but also maintains high separation efficiency, making it a promising tool for rapid point-of-care diagnostics.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02831-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infections are a leading cause of mortality globally, and the timeliness of diagnosis is crucial for effective treatment. Traditional diagnostic methods, reliant on bacterial cultures, are often slow, leading to delays in treatment and increased mortality rates. To address delayed treatments, the study proposes a hybrid microfluidic device that employs deterministic lateral displacement (DLD) and dielectrophoresis (DEP) for rapid and continuous bacterial separation from blood cells. The research utilized COMSOL Multiphysics 5.6 to design and simulate the device, focusing on the optimization of various parameters such as pillar geometry, electrode geometry, fluid velocity, voltage, and DEP frequency. In order to calculate the separation efficiency, 120 particles along with the fluid were entered into the primary initial and the optimized hybrid device. The initial simulations yielded a separation efficiency of approximately 72% for bacteria and red blood cells (RBCs), and 100% for white blood cells (WBCs). After iterative optimization of the device’s design, including changes to the pillar geometries and electrode geometries and numbers, the separation efficiency for bacteria and RBCs was enhanced to 95%, while the efficiency for WBCs remained at 100%. These findings demonstrate the high efficiency of the designed microfluidic device in separating particles, indicating its potential to significantly reduce the time required for the detection of bacterial infections compared to conventional methods. The study presents a model of a microfluidic device that not only accelerates the diagnosis process but also maintains high separation efficiency, making it a promising tool for rapid point-of-care diagnostics.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).