Cluster Self-Organization of Intermetallic Systems: K3, K4, and K6 Clusters-Precursors for the Self-Assembly of Y8Rh12Sn20-oS40, Lu16Zn20Ge24-oS60, and Ba8Ir16In52-oS76 Crystal Structures
{"title":"Cluster Self-Organization of Intermetallic Systems: K3, K4, and K6 Clusters-Precursors for the Self-Assembly of Y8Rh12Sn20-oS40, Lu16Zn20Ge24-oS60, and Ba8Ir16In52-oS76 Crystal Structures","authors":"V. Ya. Shevchenko, G. D. Ilyushin","doi":"10.1134/S1087659624601060","DOIUrl":null,"url":null,"abstract":"<p>Using computer methods (the ToposPro software package), combinatorial-topological analysis and modeling of the self-assembly of Y<sub>8</sub>Rh<sub>12</sub>Sn<sub>20</sub>-<i>oS</i>40 (<i>a</i> = 4.387 Å, <i>b</i> = 26.212 Å, <i>c</i> = 7.155Å, <i>V</i> = 822.77 Å<sup>3</sup>), Lu<sub>16</sub>Zn<sub>20</sub>Ge<sub>24</sub>-<i>oS</i>60 (<i>a</i> = 4.179 Å, <i>b</i> = 18.368 Å, <i>c</i> = 15.050 Å, <i>V</i> = 1155.24 Å<sup>3</sup>), and Ba<sub>8</sub>Ir<sub>16</sub>In<sub>52</sub>-<i>oS</i>76 (<i>a</i> = 4.485 Å, <i>b</i> = 29.052 Å, <i>c</i> = 13.687 Å, <i>V</i> = 1783.63 Å<sup>3</sup>) crystal structures with the <i>Cmc</i>2<sub>1</sub>(36) space group are carried out. For Y<sub>8</sub>Rh<sub>12</sub>Sn<sub>20</sub>-<i>oS</i>40, 18 variants for identifying cluster structures with the number of clusters <i>N</i> = 1 (variant 1), 2 (variant 11), and 3 (6 variants) are established. The variant of the self-assembly of a crystal structure with the participation of clusters-precursors forming the packing in the form of the <i>K</i>6 = 0@6(YSn<sub>3</sub>Rh<sub>2</sub>) and tetrahedra <i>K</i>4 = 0@4(YSn<sub>2</sub>Rh) double tetrahedra is considered. For Lu<sub>16</sub>Zn<sub>20</sub>Ge<sub>24</sub>-<i>oS</i>60, 66 variants are established for identifying cluster structures with the number of clusters <i>N</i> = 1 (1 variant), 2 (25 variants), 3 (20 variants), and 4 (20 variants). The variant of the self-assembly of a crystal structure with the participation of <i>K</i>3(D1) = 0@3(Lu Ge<sub>2</sub>), <i>K</i>3(D2) = 0@3(Lu Zn Ge), <i>K</i>3(D3) = 0@3(Lu Zn Ge), <i>K</i>3(D4) = 0@3Lu Zn Ge), and <i>K</i>3(D5) = 0@3(GeZn<sub>2</sub>) 3-atom clusters-precursors forming the packing is considered. For Ba<sub>8</sub>Ir<sub>16</sub>In<sub>52</sub>-<i>oS</i>76, 129 variants are established of the allocation of cluster structures with the number of clusters <i>N</i> = 2 (36 variants) and <i>N</i> = 3 (103 variants). The variant of the self-assembly of a crystal structure with the participation of the clusters-precursors forming the packing is considered: <i>K</i>6 = 0@6(BaIn5) pentagonal pyramids, <i>K</i>4a = 0@4(BaRhIn2) tetrahedra and <i>K</i>4b = 0@4(Rh<sub>2</sub>In2) tetrahedra, <i>K</i>3 = 0@4(RhIn<sub>2</sub>) rings, and In spacer atoms. The symmetry and topological code of the self-assembly processes of the Y<sub>8</sub>Rh<sub>12</sub>Sn<sub>20</sub>-<i>oS</i>40, Lu<sub>16</sub>Zn<sub>20</sub>Ge<sub>24</sub>-<i>oS</i>60, and Ba<sub>8</sub>Ir<sub>16</sub>In<sub>52</sub>-<i>oS</i>76 crystal structure from <i>K</i>3, <i>K</i>4, and <i>K</i>6 clusters-precursors in the following form is reconstructed: primary chain → layer → framework.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"51 1","pages":"1 - 14"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659624601060","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using computer methods (the ToposPro software package), combinatorial-topological analysis and modeling of the self-assembly of Y8Rh12Sn20-oS40 (a = 4.387 Å, b = 26.212 Å, c = 7.155Å, V = 822.77 Å3), Lu16Zn20Ge24-oS60 (a = 4.179 Å, b = 18.368 Å, c = 15.050 Å, V = 1155.24 Å3), and Ba8Ir16In52-oS76 (a = 4.485 Å, b = 29.052 Å, c = 13.687 Å, V = 1783.63 Å3) crystal structures with the Cmc21(36) space group are carried out. For Y8Rh12Sn20-oS40, 18 variants for identifying cluster structures with the number of clusters N = 1 (variant 1), 2 (variant 11), and 3 (6 variants) are established. The variant of the self-assembly of a crystal structure with the participation of clusters-precursors forming the packing in the form of the K6 = 0@6(YSn3Rh2) and tetrahedra K4 = 0@4(YSn2Rh) double tetrahedra is considered. For Lu16Zn20Ge24-oS60, 66 variants are established for identifying cluster structures with the number of clusters N = 1 (1 variant), 2 (25 variants), 3 (20 variants), and 4 (20 variants). The variant of the self-assembly of a crystal structure with the participation of K3(D1) = 0@3(Lu Ge2), K3(D2) = 0@3(Lu Zn Ge), K3(D3) = 0@3(Lu Zn Ge), K3(D4) = 0@3Lu Zn Ge), and K3(D5) = 0@3(GeZn2) 3-atom clusters-precursors forming the packing is considered. For Ba8Ir16In52-oS76, 129 variants are established of the allocation of cluster structures with the number of clusters N = 2 (36 variants) and N = 3 (103 variants). The variant of the self-assembly of a crystal structure with the participation of the clusters-precursors forming the packing is considered: K6 = 0@6(BaIn5) pentagonal pyramids, K4a = 0@4(BaRhIn2) tetrahedra and K4b = 0@4(Rh2In2) tetrahedra, K3 = 0@4(RhIn2) rings, and In spacer atoms. The symmetry and topological code of the self-assembly processes of the Y8Rh12Sn20-oS40, Lu16Zn20Ge24-oS60, and Ba8Ir16In52-oS76 crystal structure from K3, K4, and K6 clusters-precursors in the following form is reconstructed: primary chain → layer → framework.
使用电脑的方法(ToposPro软件包),combinatorial-topological分析和建模的自组装Y8Rh12Sn20-oS40 (a = 4.387 a, b = 26.212 a, c = 7.155 V = 822.77 A3), Lu16Zn20Ge24-oS60 (a = 4.179 a, b = 18.368 a, c = 15.050 V = 1155.24 A3),和Ba8Ir16In52-oS76 (a = 4.485 a, b = 29.052 a, c = 13.687 V = 1783.63 A3)晶体结构与Cmc21(36)进行空间群。对于Y8Rh12Sn20-oS40,建立了18个用于识别簇结构的变体,其中簇数N = 1(变体1),2(变体11),3(变体6)。考虑了在簇前驱体参与下形成K6 = 0@6(YSn3Rh2)和K4 = 0@4(YSn2Rh)双四面体形式的自组装晶体结构的变化。对于Lu16Zn20Ge24-oS60,建立66个变体用于识别簇结构,其中簇数N = 1(1个变体),2(25个变体),3(20个变体),4(20个变体)。考虑了K3(D1) = 0@3(Lu Ge2)、K3(D2) = 0@3(Lu Zn Ge)、K3(D3) = 0@3(Lu Zn Ge)、K3(D4) = 0@3Lu Zn Ge)、K3(D5) = 0@3(GeZn2) 3原子团簇形成填料的自组装晶体结构的变体。对于Ba8Ir16In52-oS76,建立了129个簇结构分配变体,其中簇数N = 2(36个变体)和N = 3(103个变体)。考虑了形成填料的簇前驱体参与晶体结构的自组装的变化:K6 = 0@6(BaIn5)五边形金字塔,K4a = 0@4(BaRhIn2)四面体和K4b = 0@4(Rh2In2)四面体,K3 = 0@4(RhIn2)环和In间隔原子。从K3、K4和K6簇-前体中重构出Y8Rh12Sn20-oS40、Lu16Zn20Ge24-oS60和Ba8Ir16In52-oS76晶体结构自组装过程的对称性和拓扑编码:主链→层→框架。
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.