Elephant Random Walk with Polynomially Decaying Steps

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yuzaburo Nakano
{"title":"Elephant Random Walk with Polynomially Decaying Steps","authors":"Yuzaburo Nakano","doi":"10.1007/s10955-025-03461-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a variation of the elephant random walk whose steps are polynomially decaying. At each time <i>k</i>, the walker’s step size is <span>\\(k^{-\\gamma }\\)</span> with <span>\\(\\gamma &gt;0\\)</span>. We investigate effects of the step size exponent <span>\\(\\gamma \\)</span> and the memory parameter <span>\\(\\alpha \\in [-1,1]\\)</span> on the long-time behavior of the walker. For fixed <span>\\(\\alpha \\)</span>, it admits phase transition from divergence to convergence (localization) at <span>\\(\\gamma _{c}(\\alpha )=\\max \\{\\alpha ,1/2\\}\\)</span>. This means that large enough memory effect can shift the critical point for localization. Moreover, we obtain quantitative limit theorems which provide a detailed picture of the long-time behavior of the walker.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03461-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a variation of the elephant random walk whose steps are polynomially decaying. At each time k, the walker’s step size is \(k^{-\gamma }\) with \(\gamma >0\). We investigate effects of the step size exponent \(\gamma \) and the memory parameter \(\alpha \in [-1,1]\) on the long-time behavior of the walker. For fixed \(\alpha \), it admits phase transition from divergence to convergence (localization) at \(\gamma _{c}(\alpha )=\max \{\alpha ,1/2\}\). This means that large enough memory effect can shift the critical point for localization. Moreover, we obtain quantitative limit theorems which provide a detailed picture of the long-time behavior of the walker.

Abstract Image

具有多项式衰减步长的大象随机漫步
本文引入了步长呈多项式衰减的大象随机漫步的一种变体。在每个时刻k,步行者的步长为\(k^{-\gamma }\)与\(\gamma >0\)。我们研究步长指数\(\gamma \)和记忆参数\(\alpha \in [-1,1]\)对步行器长时间行为的影响。对于固定\(\alpha \),在\(\gamma _{c}(\alpha )=\max \{\alpha ,1/2\}\)处允许从发散到收敛(局部化)的相变。这意味着足够大的记忆效应可以改变定位的临界点。此外,我们还得到了一些定量极限定理,这些定理提供了行走器长时间行为的详细图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信