First Law of de Sitter Thermodynamics

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
G. E. Volovik
{"title":"First Law of de Sitter Thermodynamics","authors":"G. E. Volovik","doi":"10.1134/S0021364025606426","DOIUrl":null,"url":null,"abstract":"<p>The de Sitter state has a special symmetry: it is homogeneous, and its curvature is constant in space. Since all the points in the de Sitter space are equivalent, this state is described by local thermodynamics. This state has the local temperature <span>\\(T = H{\\text{/}}\\pi \\)</span> (which is twice the Gibbons–Hawking temperature), the local entropy density, the local energy density, and the local gravitational degrees of freedom including the scalar curvature <span>\\(\\mathcal{R}\\)</span> and the effective gravitational coupling <i>K</i>. On the other hand, there is the cosmological horizon, which can also be characterized by the thermodynamic relations. We consider the connections between the local thermodynamics and the thermodynamics of the cosmological horizon. In particular, there is the holographic connection between the entropy density integrated over the Hubble volume and the Gibbons–Hawking entropy of the horizon, <span>\\({{S}_{{{\\text{volume}}}}} = {{S}_{{{\\text{horizon}}}}} = A{\\text{/}}4G\\)</span>. We also consider the first law of thermodynamics in these two approaches. In the local thermodynamics, on the one hand, the first law is valid for an arbitrary volume <span>\\(V\\)</span> of de Sitter space. On the other hand, the first law is also applicable to the thermodynamics of the horizon. In both cases, the temperature is the same. This consideration is extended to the contracting de Sitter with its negative entropy, <span>\\({{S}_{{{\\text{volume}}}}} = {{S}_{{{\\text{horizon}}}}} = - A{\\text{/}}4G\\)</span>.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"121 10","pages":"766 - 770"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0021364025606426.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364025606426","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The de Sitter state has a special symmetry: it is homogeneous, and its curvature is constant in space. Since all the points in the de Sitter space are equivalent, this state is described by local thermodynamics. This state has the local temperature \(T = H{\text{/}}\pi \) (which is twice the Gibbons–Hawking temperature), the local entropy density, the local energy density, and the local gravitational degrees of freedom including the scalar curvature \(\mathcal{R}\) and the effective gravitational coupling K. On the other hand, there is the cosmological horizon, which can also be characterized by the thermodynamic relations. We consider the connections between the local thermodynamics and the thermodynamics of the cosmological horizon. In particular, there is the holographic connection between the entropy density integrated over the Hubble volume and the Gibbons–Hawking entropy of the horizon, \({{S}_{{{\text{volume}}}}} = {{S}_{{{\text{horizon}}}}} = A{\text{/}}4G\). We also consider the first law of thermodynamics in these two approaches. In the local thermodynamics, on the one hand, the first law is valid for an arbitrary volume \(V\) of de Sitter space. On the other hand, the first law is also applicable to the thermodynamics of the horizon. In both cases, the temperature is the same. This consideration is extended to the contracting de Sitter with its negative entropy, \({{S}_{{{\text{volume}}}}} = {{S}_{{{\text{horizon}}}}} = - A{\text{/}}4G\).

德西特热力学第一定律
德西特态有一种特殊的对称性:它是齐次的,它的曲率在空间中是恒定的。由于德西特空间中的所有点都是等价的,这种状态可以用局部热力学来描述。该状态具有局部温度\(T = H{\text{/}}\pi \)(是Gibbons-Hawking温度的两倍)、局部熵密度、局部能量密度和局部引力自由度,包括标量曲率\(\mathcal{R}\)和有效引力耦合k。另一方面,存在宇宙学视界,它也可以用热力学关系来表征。我们考虑局部热力学和宇宙学视界热力学之间的联系。特别是,在哈勃体积上的熵密度积分和视界的吉本斯-霍金熵(\({{S}_{{{\text{volume}}}}} = {{S}_{{{\text{horizon}}}}} = A{\text{/}}4G\))之间存在全息联系。我们还在这两种方法中考虑热力学第一定律。在局部热力学中,一方面,第一定律对任意体积\(V\)的de Sitter空间是有效的。另一方面,第一定律也适用于视界的热力学。在这两种情况下,温度是一样的。这种考虑被扩展到具有负熵的收缩德西特,\({{S}_{{{\text{volume}}}}} = {{S}_{{{\text{horizon}}}}} = - A{\text{/}}4G\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JETP Letters
JETP Letters 物理-物理:综合
CiteScore
2.40
自引率
30.80%
发文量
164
审稿时长
3-6 weeks
期刊介绍: All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信