Progress of high-temperature superconducting joints

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Yalin Yan, Dongliang Wang, Yancang Zhu, Xianping Zhang, Pengyu Bai, Yanwei Ma
{"title":"Progress of high-temperature superconducting joints","authors":"Yalin Yan,&nbsp;Dongliang Wang,&nbsp;Yancang Zhu,&nbsp;Xianping Zhang,&nbsp;Pengyu Bai,&nbsp;Yanwei Ma","doi":"10.1140/epjb/s10051-025-00976-5","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing resolution of Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) spectrometers requires the use of superconducting magnets to generate higher magnetic field strength. Since the magnetic field limit of Nb<sub>3</sub>Sn/NbTi low-temperature superconductor (LTS) coils is about 1 GHz (23.5 T), high-temperature superconductors (HTS) with excellent high-field properties have been increasingly used in superconducting coils to increase the magnetic field strength of NMR magnets. The persistent current mode (PM) of superconducting magnets requires uninterrupted current flow in the coils, maintaining strength without external power. Therefore, achieving low resistance in the joints between coils, ideally resulting in a superconducting joint, is crucial. Creating superconducting joints in high-temperature superconductors presents challenges, with significant effort directed toward overcoming them. This paper provides an overview of the preparation technologies for superconducting joints, such as ReBa<sub>2</sub>Cu<sub>3</sub>O<sub><i>y</i></sub> (REBCO, RE = rare earth), BiSrCaCuO (Bi2212, Bi2223), Iron-based Superconductors (IBS), and MgB<sub>2</sub>. By reviewing the latest advancements to key issues and conducting an in-depth analysis of the technical characteristics of different process schemes in various types of superconducting joints, this article offers valuable references for the preparation of superconducting joints.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00976-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing resolution of Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) spectrometers requires the use of superconducting magnets to generate higher magnetic field strength. Since the magnetic field limit of Nb3Sn/NbTi low-temperature superconductor (LTS) coils is about 1 GHz (23.5 T), high-temperature superconductors (HTS) with excellent high-field properties have been increasingly used in superconducting coils to increase the magnetic field strength of NMR magnets. The persistent current mode (PM) of superconducting magnets requires uninterrupted current flow in the coils, maintaining strength without external power. Therefore, achieving low resistance in the joints between coils, ideally resulting in a superconducting joint, is crucial. Creating superconducting joints in high-temperature superconductors presents challenges, with significant effort directed toward overcoming them. This paper provides an overview of the preparation technologies for superconducting joints, such as ReBa2Cu3Oy (REBCO, RE = rare earth), BiSrCaCuO (Bi2212, Bi2223), Iron-based Superconductors (IBS), and MgB2. By reviewing the latest advancements to key issues and conducting an in-depth analysis of the technical characteristics of different process schemes in various types of superconducting joints, this article offers valuable references for the preparation of superconducting joints.

Graphical abstract

高温超导接头研究进展
磁共振成像(MRI)和核磁共振(NMR)光谱仪的分辨率不断提高,需要使用超导磁体来产生更高的磁场强度。由于Nb3Sn/NbTi低温超导体(LTS)线圈的磁场极限约为1ghz (23.5 T),具有优异高场性能的高温超导体(HTS)越来越多地应用于超导线圈中,以提高核磁共振磁体的磁场强度。超导磁体的持续电流模式(PM)要求线圈中不间断的电流,在没有外部电源的情况下保持强度。因此,在线圈之间的接头中实现低电阻,理想地导致超导接头,是至关重要的。在高温超导体中制造超导接头是一项挑战,需要付出巨大的努力来克服它们。本文综述了ReBa2Cu3Oy (REBCO, RE =稀土)、BiSrCaCuO (Bi2212, Bi2223)、铁基超导体(IBS)、MgB2等超导接头的制备技术。本文综述了超导接头关键问题的最新进展,深入分析了各类超导接头不同工艺方案的技术特点,为超导接头的制备提供了有价值的参考。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信