The Reverse Burnett Conjecture for Null Dusts

IF 2.6 1区 数学 Q1 MATHEMATICS
Arthur Touati
{"title":"The Reverse Burnett Conjecture for Null Dusts","authors":"Arthur Touati","doi":"10.1007/s40818-025-00213-3","DOIUrl":null,"url":null,"abstract":"<div><p>Given a regular solution <span>\\(\\mathbf{g}_0\\)</span> of the Einstein-null dusts system without restriction on the number of dusts, we construct families of solutions <span>\\((\\mathbf{g}_\\lambda)_{\\lambda\\in(0,1]}\\)</span> of the Einstein vacuum equations such that <span>\\(\\mathbf{g}_\\lambda-\\mathbf{g}_0\\)</span> and <span>\\(\\partial(\\mathbf{g}_\\lambda-\\mathbf{g}_0)\\)</span> converges respectively strongly and weakly to 0 when <span>\\(\\lambda\\to0\\)</span>. Our construction, based on a multiphase geometric optics ansatz, thus extends the validity of the reverse Burnett conjecture without symmetry to a large class of massless kinetic spacetimes. In order to deal with the finite but arbitrary number of direction of oscillations we work in a generalised wave gauge and control precisely the self-interaction of each wave but also the interaction of waves propagating in different null directions, relying crucially on the non-linear structure of the Einstein vacuum equations. We also provide the construction of oscillating initial data solving the vacuum constraint equations and which are consistent with the spacetime ansatz.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00213-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a regular solution \(\mathbf{g}_0\) of the Einstein-null dusts system without restriction on the number of dusts, we construct families of solutions \((\mathbf{g}_\lambda)_{\lambda\in(0,1]}\) of the Einstein vacuum equations such that \(\mathbf{g}_\lambda-\mathbf{g}_0\) and \(\partial(\mathbf{g}_\lambda-\mathbf{g}_0)\) converges respectively strongly and weakly to 0 when \(\lambda\to0\). Our construction, based on a multiphase geometric optics ansatz, thus extends the validity of the reverse Burnett conjecture without symmetry to a large class of massless kinetic spacetimes. In order to deal with the finite but arbitrary number of direction of oscillations we work in a generalised wave gauge and control precisely the self-interaction of each wave but also the interaction of waves propagating in different null directions, relying crucially on the non-linear structure of the Einstein vacuum equations. We also provide the construction of oscillating initial data solving the vacuum constraint equations and which are consistent with the spacetime ansatz.

零尘的逆伯内特猜想
给定不受尘数限制的爱因斯坦-零尘系统的正则解\(\mathbf{g}_0\),我们构造了爱因斯坦真空方程的解族\((\mathbf{g}_\lambda)_{\lambda\in(0,1]}\),使得\(\mathbf{g}_\lambda-\mathbf{g}_0\)和\(\partial(\mathbf{g}_\lambda-\mathbf{g}_0)\)在\(\lambda\to0\)时分别强收敛于0和弱收敛于0。我们的构造基于多相几何光学猜想,从而将无对称的逆伯内特猜想的有效性扩展到大类无质量动力学时空。为了处理有限但任意数量的振荡方向,我们在一个广义波规中工作,并精确控制每个波的自相互作用,以及在不同零方向传播的波的相互作用,主要依赖于爱因斯坦真空方程的非线性结构。我们还提供了求解真空约束方程的振荡初始数据的构造,该构造与时空分析相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信