Accelerated generation and activation of H2O2 by the synergetic effect of pyridine-N protonation and Co0 species toward efficient electro-Fenton

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Miao Tian, Shi-Long Li, Ye Chen, Cong-Xin Xia, Ya-Xin Guo, Jia-Yao Qiu, Xu-Po Liu, Xin Chen, Yang Lu, Shi-Xue Dou
{"title":"Accelerated generation and activation of H2O2 by the synergetic effect of pyridine-N protonation and Co0 species toward efficient electro-Fenton","authors":"Miao Tian,&nbsp;Shi-Long Li,&nbsp;Ye Chen,&nbsp;Cong-Xin Xia,&nbsp;Ya-Xin Guo,&nbsp;Jia-Yao Qiu,&nbsp;Xu-Po Liu,&nbsp;Xin Chen,&nbsp;Yang Lu,&nbsp;Shi-Xue Dou","doi":"10.1007/s12598-025-03383-y","DOIUrl":null,"url":null,"abstract":"<p>Designing highly effective cathodic catalysts that can efficiently generate H<sub>2</sub>O<sub>2</sub> in situ and promptly convert it to hydroxyl radicals (·OH) poses a significant challenge within the heterogeneous electro-Fenton (EF) systems. Herein, we fabricate a bifunctional core–shell catalyst featuring Co<sup>0</sup> species encapsulated within N, P-codoped carbon shells through a hydrothermal-pyrolysis strategy, utilizing bamboo shoots as biomass-derived precursors. Density functional theory (DFT) calculations elucidate that the protonation of pyridinic nitrogen modifies the adsorption energy of the OOH* intermediate, positioning it optimally at the peak (3.81 eV) on the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) volcano plot, thereby significantly boosting H<sub>2</sub>O<sub>2</sub> production. Moreover, the Co<sup>0</sup> species embedded within the catalyst function as electron donors, catalyzing the activation of H<sub>2</sub>O<sub>2</sub> to produce ·OH by efficiently facilitating the transfer of electrons to Fe<sup>3+</sup>. Consequently, the synthesized catalyst exhibits a minimum electron transfer number of 2.06 and a maximum H<sub>2</sub>O<sub>2</sub> selectivity of 97.4%. Moreover, the degradation for the methylene blue solution exceeds 95% within 15 min, with only an 11.3% reduction in degradation efficiency after 180 min of continuous operation (9 cycles). This bifunctional catalyst design provides valuable insights that can accelerate the development of EF-based degradation systems.</p>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7418 - 7429"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03383-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing highly effective cathodic catalysts that can efficiently generate H2O2 in situ and promptly convert it to hydroxyl radicals (·OH) poses a significant challenge within the heterogeneous electro-Fenton (EF) systems. Herein, we fabricate a bifunctional core–shell catalyst featuring Co0 species encapsulated within N, P-codoped carbon shells through a hydrothermal-pyrolysis strategy, utilizing bamboo shoots as biomass-derived precursors. Density functional theory (DFT) calculations elucidate that the protonation of pyridinic nitrogen modifies the adsorption energy of the OOH* intermediate, positioning it optimally at the peak (3.81 eV) on the two-electron oxygen reduction reaction (2e ORR) volcano plot, thereby significantly boosting H2O2 production. Moreover, the Co0 species embedded within the catalyst function as electron donors, catalyzing the activation of H2O2 to produce ·OH by efficiently facilitating the transfer of electrons to Fe3+. Consequently, the synthesized catalyst exhibits a minimum electron transfer number of 2.06 and a maximum H2O2 selectivity of 97.4%. Moreover, the degradation for the methylene blue solution exceeds 95% within 15 min, with only an 11.3% reduction in degradation efficiency after 180 min of continuous operation (9 cycles). This bifunctional catalyst design provides valuable insights that can accelerate the development of EF-based degradation systems.

吡啶- n质子化和Co0物质对高效电fenton的协同作用加速H2O2的生成和活化
在非均相电fenton (EF)体系中,设计高效的阴极催化剂,能够在原位高效地生成H2O2并迅速将其转化为羟基自由基(·OH)是一个重大挑战。本研究以竹笋为原料,通过水热热解方法制备了一种双功能核壳催化剂,该催化剂将Co0包裹在N, p共掺杂的碳壳中。密度泛函理论(DFT)计算表明,吡啶氮的质子化改变了OOH*中间体的吸附能,使其最佳定位于双电子氧还原反应(2e−ORR)火山图的峰值(3.81 eV),从而显著提高H2O2的产量。此外,嵌入在催化剂中的Co0作为电子给体,通过有效地促进电子向Fe3+的转移,催化H2O2活化生成·OH。结果表明,该催化剂的最小电子转移数为2.06,最大H2O2选择性为97.4%。亚甲蓝溶液在15 min内降解率超过95%,连续运行180 min(9个循环)后,降解效率仅下降11.3%。这种双功能催化剂设计提供了有价值的见解,可以加速基于ef的降解系统的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信