Linear response of tilted anisotropic two-dimensional Dirac cones

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Ipsita Mandal
{"title":"Linear response of tilted anisotropic two-dimensional Dirac cones","authors":"Ipsita Mandal","doi":"10.1140/epjb/s10051-025-00945-y","DOIUrl":null,"url":null,"abstract":"<p>We investigate the behavior of the linear-response coefficients, when in-plane electric field (<span>\\(\\textbf{E}\\)</span>) or/and temperature gradient (<span>\\(\\nabla _{\\textbf{r}} T\\)</span>) is/are applied on a two-dimensional semimetal harboring anisotropic Dirac cones. The anisotropy is caused by (1) differing Fermi velocities along the two mutually perpendicular momentum axes, and (2) tilting parameters. Using the semiclassical Boltzmann formalism, we derive the forms of the response coefficients, in the absence and presence of a nonquantizing magnetic field <span>\\(\\textbf{B}\\)</span>. The magnetic field affects the response only when it is oriented perpendicular to the plane of the material, with the resulting expressions computed with the help of the so-called Lorentz-force operator, appearing in the linearized Boltzmann equation. The solution has to be found in a recursive manner, which produces terms in powers of <span>\\(|\\textbf{B}|\\)</span>. We discuss the validity of the Mott relation and the Wiedemann–Franz law for the Lorentz-operator-induced parts.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00945-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the behavior of the linear-response coefficients, when in-plane electric field (\(\textbf{E}\)) or/and temperature gradient (\(\nabla _{\textbf{r}} T\)) is/are applied on a two-dimensional semimetal harboring anisotropic Dirac cones. The anisotropy is caused by (1) differing Fermi velocities along the two mutually perpendicular momentum axes, and (2) tilting parameters. Using the semiclassical Boltzmann formalism, we derive the forms of the response coefficients, in the absence and presence of a nonquantizing magnetic field \(\textbf{B}\). The magnetic field affects the response only when it is oriented perpendicular to the plane of the material, with the resulting expressions computed with the help of the so-called Lorentz-force operator, appearing in the linearized Boltzmann equation. The solution has to be found in a recursive manner, which produces terms in powers of \(|\textbf{B}|\). We discuss the validity of the Mott relation and the Wiedemann–Franz law for the Lorentz-operator-induced parts.

倾斜各向异性二维狄拉克锥的线性响应
我们研究了当面内电场(\(\textbf{E}\))或温度梯度(\(\nabla _{\textbf{r}} T\))作用于二维半金属夹带各向异性狄拉克锥时,线性响应系数的行为。各向异性是由(1)沿两个相互垂直的动量轴的不同费米速度和(2)倾斜参数引起的。利用半经典玻尔兹曼形式,我们推导了在非量子化磁场存在和不存在情况下响应系数的形式\(\textbf{B}\)。磁场只有在垂直于材料平面的方向上才会影响响应,结果表达式是在所谓的洛伦兹力算子的帮助下计算出来的,出现在线性化的玻尔兹曼方程中。必须以递归的方式找到解决方案,这产生了\(|\textbf{B}|\)的幂项。我们讨论了Mott关系和Wiedemann-Franz定律对于洛伦兹算子诱导部分的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信