Odd generalized Einstein metrics on Lie groups

IF 0.9 3区 数学 Q1 MATHEMATICS
Vicente Cortés, Liana David
{"title":"Odd generalized Einstein metrics on Lie groups","authors":"Vicente Cortés,&nbsp;Liana David","doi":"10.1007/s10231-024-01540-1","DOIUrl":null,"url":null,"abstract":"<div><p>An odd generalized metric <span>\\(E_{-}\\)</span> on a Lie group <i>G</i> of dimension <i>n</i> is a left-invariant generalized metric on a Courant algebroid <span>\\(E_{H, F}\\)</span> of type <span>\\(B_{n}\\)</span> over <i>G</i> with left-invariant twisting forms <span>\\(H\\in \\Omega ^{3}(G)\\)</span> and <span>\\(F\\in \\Omega ^{2}(G)\\)</span>. Given an odd generalized metric <span>\\(E_{-}\\)</span> on <i>G</i> we determine the affine space of left-invariant Levi-Civita generalized connections of <span>\\(E_{-}\\)</span>. Given in addition a left-invariant divergence operator <span>\\(\\delta \\)</span> we show that there is a left-invariant Levi-Civita generalized connection of <span>\\(E_{-}\\)</span> with divergence <span>\\(\\delta \\)</span> and we compute the corresponding Ricci tensor <span>\\(\\textrm{Ric}^{\\delta }\\)</span> of the pair <span>\\((E_{-}, \\delta )\\)</span>. The odd generalized metric <span>\\(E_{-}\\)</span> is called odd generalized Einstein with divergence <span>\\(\\delta \\)</span> if <span>\\(\\textrm{Ric}^{\\delta }=0\\)</span>. As an application of our theory, we describe all odd generalized Einstein metrics of arbitrary left-invariant divergence on all 3-dimensional unimodular Lie groups.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1603 - 1632"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01540-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01540-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An odd generalized metric \(E_{-}\) on a Lie group G of dimension n is a left-invariant generalized metric on a Courant algebroid \(E_{H, F}\) of type \(B_{n}\) over G with left-invariant twisting forms \(H\in \Omega ^{3}(G)\) and \(F\in \Omega ^{2}(G)\). Given an odd generalized metric \(E_{-}\) on G we determine the affine space of left-invariant Levi-Civita generalized connections of \(E_{-}\). Given in addition a left-invariant divergence operator \(\delta \) we show that there is a left-invariant Levi-Civita generalized connection of \(E_{-}\) with divergence \(\delta \) and we compute the corresponding Ricci tensor \(\textrm{Ric}^{\delta }\) of the pair \((E_{-}, \delta )\). The odd generalized metric \(E_{-}\) is called odd generalized Einstein with divergence \(\delta \) if \(\textrm{Ric}^{\delta }=0\). As an application of our theory, we describe all odd generalized Einstein metrics of arbitrary left-invariant divergence on all 3-dimensional unimodular Lie groups.

李群上的奇广义爱因斯坦度量
n维李群G上的奇广义度规\(E_{-}\)是G上的左不变扭曲形式为\(H\in \Omega ^{3}(G)\)和\(F\in \Omega ^{2}(G)\)的\(B_{n}\)型Courant代数体\(E_{H, F}\)上的左不变广义度规。给定G上的一个奇广义度量\(E_{-}\),我们确定了\(E_{-}\)的左不变Levi-Civita广义连接的仿射空间。另外给出一个左不变散度算子\(\delta \),证明了\(E_{-}\)与散度存在一个左不变的Levi-Civita广义连接\(\delta \),并计算了相应的Ricci张量\(\textrm{Ric}^{\delta }\)\((E_{-}, \delta )\)。奇广义度规\(E_{-}\)被称为带散度的奇广义爱因斯坦\(\delta \) if \(\textrm{Ric}^{\delta }=0\)。作为我们理论的一个应用,我们描述了所有三维单模李群上任意左不变散度的所有奇广义爱因斯坦度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信