Supercritical CO2 etching MXene for RuSe2 coating as high-efficiency alkaline hydrogen evolution reaction catalyst

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shi-Long Han, Qing-Yong Tian, Bo Gao, Xiao-Qing Sui, Hong-Po Liu, Wei-Jing Yao, Wen-Zhuo Wu, Qun Xu
{"title":"Supercritical CO2 etching MXene for RuSe2 coating as high-efficiency alkaline hydrogen evolution reaction catalyst","authors":"Shi-Long Han,&nbsp;Qing-Yong Tian,&nbsp;Bo Gao,&nbsp;Xiao-Qing Sui,&nbsp;Hong-Po Liu,&nbsp;Wei-Jing Yao,&nbsp;Wen-Zhuo Wu,&nbsp;Qun Xu","doi":"10.1007/s12598-025-03442-4","DOIUrl":null,"url":null,"abstract":"<div><p>Alkaline water electrolysis poses significant potential for large-scale industrial hydrogen generation, but is impeded by the absence of an efficient electrocatalyst capable of operating at high current densities while maintaining with minimal overpotential. Herein, we construct a mechanically stable and highly active RuSe<sub>2</sub>/MXene heterojunction electrocatalyst. A typical SC-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene substrate was successfully prepared by supercritical CO<sub>2</sub> (SC-CO<sub>2</sub>) etching, combined by subsequent DMSO intercalation treatment. Further, the RuSe<sub>2</sub> nanoparticles were uniformly deposited on the surface of SC-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>. Theoretical calculations and experimental results demonstrate that fluorine-rich MXene exhibits stable binding with the active 1T phase RuSe<sub>2</sub>. The as-prepared representative RuSe<sub>2</sub>@SC-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>-3 heterostructure showed exceptional alkaline hydrogen evolution performance, demonstrating an overpotential of 15 mV at 10 mA cm<sup>−2</sup> and a Tafel slope of 21.84 mV dec<sup>−1</sup>, which presents excellent HER performance and stability at high-current-density conditions. Moreover, the overpotential under the current density of 500 mA cm<sup>−2</sup> is merely 182 mV, and the HER efficiency remains unaffected even after 5000 cycles and 120 h of continuous testing.</p><h3>Graphical abstract</h3><p>\nA novel protocol is proposed for etching Ti3AlC2 MAX phase depending on the supercritical CO2 and ZnF2·4H<sub>2</sub>O as an effective etchant to fabricate MXene with enriched F delamination. The F-rich MXene exhibits stronger interactions with the active 1T phase RuSe2, thereby significantly enhancing the electrocatalytic activity and stability under high current density.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7373 - 7384"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03442-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline water electrolysis poses significant potential for large-scale industrial hydrogen generation, but is impeded by the absence of an efficient electrocatalyst capable of operating at high current densities while maintaining with minimal overpotential. Herein, we construct a mechanically stable and highly active RuSe2/MXene heterojunction electrocatalyst. A typical SC-Ti3C2Tx MXene substrate was successfully prepared by supercritical CO2 (SC-CO2) etching, combined by subsequent DMSO intercalation treatment. Further, the RuSe2 nanoparticles were uniformly deposited on the surface of SC-Ti3C2Tx. Theoretical calculations and experimental results demonstrate that fluorine-rich MXene exhibits stable binding with the active 1T phase RuSe2. The as-prepared representative RuSe2@SC-Ti3C2Tx-3 heterostructure showed exceptional alkaline hydrogen evolution performance, demonstrating an overpotential of 15 mV at 10 mA cm−2 and a Tafel slope of 21.84 mV dec−1, which presents excellent HER performance and stability at high-current-density conditions. Moreover, the overpotential under the current density of 500 mA cm−2 is merely 182 mV, and the HER efficiency remains unaffected even after 5000 cycles and 120 h of continuous testing.

Graphical abstract

A novel protocol is proposed for etching Ti3AlC2 MAX phase depending on the supercritical CO2 and ZnF2·4H2O as an effective etchant to fabricate MXene with enriched F delamination. The F-rich MXene exhibits stronger interactions with the active 1T phase RuSe2, thereby significantly enhancing the electrocatalytic activity and stability under high current density.

超临界CO2蚀刻MXene用于rus2涂层的高效碱性析氢反应催化剂
碱水电解具有大规模工业制氢的巨大潜力,但由于缺乏有效的电催化剂,无法在高电流密度下工作,同时保持最小的过电位,因此受到阻碍。在此,我们构建了一种机械稳定且高活性的rus2 /MXene异质结电催化剂。采用超临界CO2 (SC-CO2)蚀刻,结合DMSO插层处理,成功制备了典型的SC-Ti3C2Tx MXene衬底。进一步,在SC-Ti3C2Tx表面均匀沉积了rus2纳米颗粒。理论计算和实验结果表明,富氟MXene与活性的1T相RuSe2具有稳定的结合。制备的具有代表性的RuSe2@SC-Ti3C2Tx-3异质结构具有优异的碱性析氢性能,在10 mA cm−2时过电位为15 mV, Tafel斜率为21.84 mV dec−1,在高电流密度条件下具有优异的HER性能和稳定性。此外,在500 mA cm−2电流密度下,过电位仅为182 mV,即使经过5000次循环和120 h的连续测试,HER效率仍未受到影响。提出了一种新的蚀刻方案,该方案依赖于超临界CO2和ZnF2·4H2O作为有效的蚀刻剂来制备富F分层的MXene。富f的MXene与活性的1T相rus2表现出更强的相互作用,从而显著提高了高电流密度下的电催化活性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信