{"title":"Supercritical CO2 etching MXene for RuSe2 coating as high-efficiency alkaline hydrogen evolution reaction catalyst","authors":"Shi-Long Han, Qing-Yong Tian, Bo Gao, Xiao-Qing Sui, Hong-Po Liu, Wei-Jing Yao, Wen-Zhuo Wu, Qun Xu","doi":"10.1007/s12598-025-03442-4","DOIUrl":null,"url":null,"abstract":"<div><p>Alkaline water electrolysis poses significant potential for large-scale industrial hydrogen generation, but is impeded by the absence of an efficient electrocatalyst capable of operating at high current densities while maintaining with minimal overpotential. Herein, we construct a mechanically stable and highly active RuSe<sub>2</sub>/MXene heterojunction electrocatalyst. A typical SC-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene substrate was successfully prepared by supercritical CO<sub>2</sub> (SC-CO<sub>2</sub>) etching, combined by subsequent DMSO intercalation treatment. Further, the RuSe<sub>2</sub> nanoparticles were uniformly deposited on the surface of SC-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>. Theoretical calculations and experimental results demonstrate that fluorine-rich MXene exhibits stable binding with the active 1T phase RuSe<sub>2</sub>. The as-prepared representative RuSe<sub>2</sub>@SC-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>-3 heterostructure showed exceptional alkaline hydrogen evolution performance, demonstrating an overpotential of 15 mV at 10 mA cm<sup>−2</sup> and a Tafel slope of 21.84 mV dec<sup>−1</sup>, which presents excellent HER performance and stability at high-current-density conditions. Moreover, the overpotential under the current density of 500 mA cm<sup>−2</sup> is merely 182 mV, and the HER efficiency remains unaffected even after 5000 cycles and 120 h of continuous testing.</p><h3>Graphical abstract</h3><p>\nA novel protocol is proposed for etching Ti3AlC2 MAX phase depending on the supercritical CO2 and ZnF2·4H<sub>2</sub>O as an effective etchant to fabricate MXene with enriched F delamination. The F-rich MXene exhibits stronger interactions with the active 1T phase RuSe2, thereby significantly enhancing the electrocatalytic activity and stability under high current density.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7373 - 7384"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03442-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaline water electrolysis poses significant potential for large-scale industrial hydrogen generation, but is impeded by the absence of an efficient electrocatalyst capable of operating at high current densities while maintaining with minimal overpotential. Herein, we construct a mechanically stable and highly active RuSe2/MXene heterojunction electrocatalyst. A typical SC-Ti3C2Tx MXene substrate was successfully prepared by supercritical CO2 (SC-CO2) etching, combined by subsequent DMSO intercalation treatment. Further, the RuSe2 nanoparticles were uniformly deposited on the surface of SC-Ti3C2Tx. Theoretical calculations and experimental results demonstrate that fluorine-rich MXene exhibits stable binding with the active 1T phase RuSe2. The as-prepared representative RuSe2@SC-Ti3C2Tx-3 heterostructure showed exceptional alkaline hydrogen evolution performance, demonstrating an overpotential of 15 mV at 10 mA cm−2 and a Tafel slope of 21.84 mV dec−1, which presents excellent HER performance and stability at high-current-density conditions. Moreover, the overpotential under the current density of 500 mA cm−2 is merely 182 mV, and the HER efficiency remains unaffected even after 5000 cycles and 120 h of continuous testing.
Graphical abstract
A novel protocol is proposed for etching Ti3AlC2 MAX phase depending on the supercritical CO2 and ZnF2·4H2O as an effective etchant to fabricate MXene with enriched F delamination. The F-rich MXene exhibits stronger interactions with the active 1T phase RuSe2, thereby significantly enhancing the electrocatalytic activity and stability under high current density.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.