Fredholm Nature of Orbital Frame Operators in Hilbert Spaces

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Z. Saeedi, H. Rezaei
{"title":"Fredholm Nature of Orbital Frame Operators in Hilbert Spaces","authors":"Z. Saeedi,&nbsp;H. Rezaei","doi":"10.1007/s40995-025-01780-7","DOIUrl":null,"url":null,"abstract":"<div><p>A bounded linear operator <i>T</i> on a Hilbert space <i>H</i> is said to be orbital frame if there exists a vector <span>\\(x \\in H\\)</span> such that <i>orb</i>(<i>T</i>, <i>x</i>) is a frame. This paper presents a new examination of frames in the context of Hilbert spaces, showing that orbital frames operators must be Fredholm. In particular, if an orbital frame operator either has a dense range or be one-to-one then it is an invertible.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 4","pages":"1005 - 1011"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-025-01780-7","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A bounded linear operator T on a Hilbert space H is said to be orbital frame if there exists a vector \(x \in H\) such that orb(Tx) is a frame. This paper presents a new examination of frames in the context of Hilbert spaces, showing that orbital frames operators must be Fredholm. In particular, if an orbital frame operator either has a dense range or be one-to-one then it is an invertible.

Hilbert空间中轨道坐标系算子的Fredholm性质
如果存在一个向量\(x \in H\)使得orb(T, x)是一个坐标系,那么希尔伯特空间H上的有界线性算子T就是轨道坐标系。本文给出了Hilbert空间中对帧的一种新的检验,证明了轨道帧算子必须是Fredholm算子。特别地,如果一个轨道系算符要么有密集的范围,要么是一对一的,那么它是可逆的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信