Structure and ionic dynamics of Mn- and Fe-based Ca-ion battery electrode materials from molecular simulations

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-06-10 DOI:10.1007/s11581-025-06457-0
Rachita Panigrahi, Bhabani S. Mallik
{"title":"Structure and ionic dynamics of Mn- and Fe-based Ca-ion battery electrode materials from molecular simulations","authors":"Rachita Panigrahi,&nbsp;Bhabani S. Mallik","doi":"10.1007/s11581-025-06457-0","DOIUrl":null,"url":null,"abstract":"<div><p>Divalent intercalating metal ions, such as Mg<sup>2+</sup>, Zn<sup>2+</sup>, and Ca<sup>2+</sup>, in metal-ion batteries have garnered significant research interest with their remarkable capacity enhancement due to two electron transfer and low cost compared to lithium-ion batteries. The remarkable diffusivity and structural stability of some positive electrode materials, potentially significant for multivalent batteries, are the main reasons for using them in commercial batteries. In this work, we choose four materials with relatively fast ionic mobility, low energy diffusive barrier, and increased specific capacity. Calcium intercalation in positive electrode materials with the chemical formula Ca<sub>x</sub>M<sub>y</sub>O<sub>z</sub>, where M is the transition metal element (Fe, Mn), is investigated using density functional theory and classical molecular dynamics simulations. We have reported the structural, electronic, and transport properties of four cost-effective compounds such as Ca<sub>4</sub>Mn<sub>2</sub>O<sub>7</sub>, CaMn<sub>3</sub>O<sub>6</sub>, and CaFe<sub>2+n</sub>O<sub>4+<i>n</i></sub>(<i>n</i> = 0.25 and 0). First principle calculations reveal the atomistic structure and local chemical environment. The cation–anion interactions in these materials are analyzed by calculating radial distribution functions. The diffusion properties of Ca<sup>2+</sup> ions and conductivity in these solid materials were calculated using interatomic potential parameters in classical molecular dynamics, which reveal the ionic dynamics of these materials.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 8","pages":"8073 - 8084"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06457-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Divalent intercalating metal ions, such as Mg2+, Zn2+, and Ca2+, in metal-ion batteries have garnered significant research interest with their remarkable capacity enhancement due to two electron transfer and low cost compared to lithium-ion batteries. The remarkable diffusivity and structural stability of some positive electrode materials, potentially significant for multivalent batteries, are the main reasons for using them in commercial batteries. In this work, we choose four materials with relatively fast ionic mobility, low energy diffusive barrier, and increased specific capacity. Calcium intercalation in positive electrode materials with the chemical formula CaxMyOz, where M is the transition metal element (Fe, Mn), is investigated using density functional theory and classical molecular dynamics simulations. We have reported the structural, electronic, and transport properties of four cost-effective compounds such as Ca4Mn2O7, CaMn3O6, and CaFe2+nO4+n(n = 0.25 and 0). First principle calculations reveal the atomistic structure and local chemical environment. The cation–anion interactions in these materials are analyzed by calculating radial distribution functions. The diffusion properties of Ca2+ ions and conductivity in these solid materials were calculated using interatomic potential parameters in classical molecular dynamics, which reveal the ionic dynamics of these materials.

基于分子模拟的锰基和铁基钙离子电池电极材料的结构和离子动力学
金属离子电池中的二价插入金属离子,如Mg2+、Zn2+和Ca2+,由于其与锂离子电池相比具有两种电子转移和低成本的显著容量增强而获得了重要的研究兴趣。某些正极材料具有显著的扩散性和结构稳定性,对多价电池具有潜在的重要意义,这是将其用于商业电池的主要原因。在这项工作中,我们选择了四种离子迁移速度相对较快、能量扩散势垒低、比容量增加的材料。利用密度泛函理论和经典分子动力学模拟研究了钙在化学式为CaxMyOz的正极材料中的插层,其中M为过渡金属元素(Fe, Mn)。我们报道了四种具有成本效益的化合物Ca4Mn2O7、CaMn3O6和CaFe2+nO4+n(n = 0.25和0)的结构、电子和输运性质。第一性原理计算揭示了原子结构和局部化学环境。通过计算径向分布函数,分析了这些材料中的阳离子-阴离子相互作用。利用经典分子动力学中的原子间势参数计算了Ca2+离子在固体材料中的扩散特性和电导率,揭示了这些材料的离子动力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信