Effect of Mn3O4 particle size on synthesis and electrochemical performance of spinel LiMn2O4 cathode

IF 2.6 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-06-10 DOI:10.1007/s11581-025-06441-8
Yicun Wang, Zhipeng Wang, Zenghui Li, Xuanning Huang, Yang Yang, Jin Yu, Xiaodong Pei, Dongming Liu
{"title":"Effect of Mn3O4 particle size on synthesis and electrochemical performance of spinel LiMn2O4 cathode","authors":"Yicun Wang,&nbsp;Zhipeng Wang,&nbsp;Zenghui Li,&nbsp;Xuanning Huang,&nbsp;Yang Yang,&nbsp;Jin Yu,&nbsp;Xiaodong Pei,&nbsp;Dongming Liu","doi":"10.1007/s11581-025-06441-8","DOIUrl":null,"url":null,"abstract":"<div><p>Spinel LiMn<sub>2</sub>O<sub>4</sub> has emerged as a highly promising cathode material for large-scale applications in lithium-ion batteries. The physicochemical properties of LiMn<sub>2</sub>O<sub>4</sub>, particularly particle size, specific surface area and crystallinity, play crucial roles in determining electrode kinetics and electrochemical performance. In this study, spherical Mn<sub>3</sub>O<sub>4</sub> particles with controlled sizes were synthesized through a metallic manganese corrosion-oxidation method, which subsequently served as manganese precursors for preparing LiMn<sub>2</sub>O<sub>4</sub> with different particle sizes. The effects of particle size on the structural characteristics and electrochemical properties of LiMn<sub>2</sub>O<sub>4</sub> were systematically investigated. The results demonstrate that the spherical LiMn<sub>2</sub>O<sub>4</sub> synthesized from smaller Mn<sub>3</sub>O<sub>4</sub> particles (median particle size D<sub>50</sub> = 3.33 μm) exhibits enhanced structural stability, reduced electrochemical impedance, and improved lithium-ion diffusion coefficient, leading to remarkable improvement in lithium storage properties. Specifically, this optimized material delivers specific discharge capacities of 126.51 mAh/g at 1 C and 105.01 mAh/g at 10 C under 25 °C. Moreover, it exhibits a capacity retention rate of 83.76% after 400 cycles at 1 C and 25 °C, indicating stable long-term performance. These findings reveal that the particle size of Mn<sub>3</sub>O<sub>4</sub> significantly influences the structural and electrochemical properties of LiMn<sub>2</sub>O<sub>4</sub>, providing valuable guidance and practical pathways for synthesizing high-performance lithium manganese oxide cathode materials.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 8","pages":"7745 - 7755"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06441-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel LiMn2O4 has emerged as a highly promising cathode material for large-scale applications in lithium-ion batteries. The physicochemical properties of LiMn2O4, particularly particle size, specific surface area and crystallinity, play crucial roles in determining electrode kinetics and electrochemical performance. In this study, spherical Mn3O4 particles with controlled sizes were synthesized through a metallic manganese corrosion-oxidation method, which subsequently served as manganese precursors for preparing LiMn2O4 with different particle sizes. The effects of particle size on the structural characteristics and electrochemical properties of LiMn2O4 were systematically investigated. The results demonstrate that the spherical LiMn2O4 synthesized from smaller Mn3O4 particles (median particle size D50 = 3.33 μm) exhibits enhanced structural stability, reduced electrochemical impedance, and improved lithium-ion diffusion coefficient, leading to remarkable improvement in lithium storage properties. Specifically, this optimized material delivers specific discharge capacities of 126.51 mAh/g at 1 C and 105.01 mAh/g at 10 C under 25 °C. Moreover, it exhibits a capacity retention rate of 83.76% after 400 cycles at 1 C and 25 °C, indicating stable long-term performance. These findings reveal that the particle size of Mn3O4 significantly influences the structural and electrochemical properties of LiMn2O4, providing valuable guidance and practical pathways for synthesizing high-performance lithium manganese oxide cathode materials.

Mn3O4粒径对尖晶石LiMn2O4阴极合成及电化学性能的影响
尖晶石LiMn2O4已成为一种极有前途的锂离子电池正极材料。LiMn2O4的物理化学性质,特别是粒度、比表面积和结晶度,对电极动力学和电化学性能起着至关重要的作用。本研究采用金属锰腐蚀氧化法制备了粒径可控的球形Mn3O4颗粒,作为制备不同粒径LiMn2O4的锰前驱体。系统地研究了粒径对LiMn2O4结构特征和电化学性能的影响。结果表明,粒径较小的Mn3O4(中位粒径D50 = 3.33 μm)制备的球形LiMn2O4结构稳定性增强,电化学阻抗降低,锂离子扩散系数提高,锂存储性能显著提高。具体来说,这种优化的材料在1℃下的放电容量为126.51 mAh/g,在25℃下的10℃下的放电容量为105.01 mAh/g。在1℃和25℃下循环400次后,其容量保持率为83.76%,长期性能稳定。这些研究结果表明,Mn3O4的粒度对LiMn2O4的结构和电化学性能有显著影响,为合成高性能锰酸锂正极材料提供了有价值的指导和实用途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信