Development of a p-n Ni-ZIF/TiO2 Heterojunction for Photoelectrocatalytic Hydrogen Generation from Seawater

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Daxiang Jin, Wanggang Zhang, Jian Wang, Xiaohong Li, Yiming Liu
{"title":"Development of a p-n Ni-ZIF/TiO2 Heterojunction for Photoelectrocatalytic Hydrogen Generation from Seawater","authors":"Daxiang Jin,&nbsp;Wanggang Zhang,&nbsp;Jian Wang,&nbsp;Xiaohong Li,&nbsp;Yiming Liu","doi":"10.1007/s10562-025-05070-0","DOIUrl":null,"url":null,"abstract":"<div><p>Photoelectrochemical (PEC) seawater splitting faces challenges including limited light absorption, rapid charge recombination, and chloride corrosion. This study addresses these issues by constructing a p-n heterojunction composite photoanode (Ni-ZIF/TNTAs) through solvothermal integration of nickel-based zeolitic imidazolate framework (Ni-ZIF) onto anodized TiO<sub>2</sub> nanotube arrays (TNTAs). The synergy between Ni-ZIF (bandgap: 2.23 eV) and TNTAs narrows the composite bandgap to 2.72 eV, extending light absorption to 450 nm. The optimized Ni-ZIF/TNTAs (NT-0.01) achieves a photocurrent density of 2.2 mA/cm² at 1.23 V vs. RHE in simulated seawater (3.5 wt% NaCl), fivefold higher than pristine TNTAs (0.44 mA/cm²), alongside a hydrogen evolution rate of 117.5 µmol/cm². Mott-Schottky and UV-vis analyses confirm a built-in electric field at the p-n junction interface, facilitating charge separation and doubling the incident photon-to-current efficiency (IPCE) to 30% at 365 nm. Remarkably, the composite retains 96% hydrogen yield over four cycles, attributed to dynamically formed surface NiOOH layers that suppress chloride penetration while maintaining 87% oxygen evolution reaction (OER) selectivity. This work pioneers the application of Ni-ZIF/TiO<sub>2</sub> heterojunctions in seawater splitting, offering a scalable strategy to reduce freshwater dependency in solar-driven hydrogen production. The design merges visible-light harvesting, corrosion resistance, and efficient charge transport, advancing sustainable energy solutions.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-05070-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical (PEC) seawater splitting faces challenges including limited light absorption, rapid charge recombination, and chloride corrosion. This study addresses these issues by constructing a p-n heterojunction composite photoanode (Ni-ZIF/TNTAs) through solvothermal integration of nickel-based zeolitic imidazolate framework (Ni-ZIF) onto anodized TiO2 nanotube arrays (TNTAs). The synergy between Ni-ZIF (bandgap: 2.23 eV) and TNTAs narrows the composite bandgap to 2.72 eV, extending light absorption to 450 nm. The optimized Ni-ZIF/TNTAs (NT-0.01) achieves a photocurrent density of 2.2 mA/cm² at 1.23 V vs. RHE in simulated seawater (3.5 wt% NaCl), fivefold higher than pristine TNTAs (0.44 mA/cm²), alongside a hydrogen evolution rate of 117.5 µmol/cm². Mott-Schottky and UV-vis analyses confirm a built-in electric field at the p-n junction interface, facilitating charge separation and doubling the incident photon-to-current efficiency (IPCE) to 30% at 365 nm. Remarkably, the composite retains 96% hydrogen yield over four cycles, attributed to dynamically formed surface NiOOH layers that suppress chloride penetration while maintaining 87% oxygen evolution reaction (OER) selectivity. This work pioneers the application of Ni-ZIF/TiO2 heterojunctions in seawater splitting, offering a scalable strategy to reduce freshwater dependency in solar-driven hydrogen production. The design merges visible-light harvesting, corrosion resistance, and efficient charge transport, advancing sustainable energy solutions.

Graphical Abstract

海水光电催化制氢用p-n Ni-ZIF/TiO2异质结的研制
光电化学(PEC)海水裂解技术面临着光吸收受限、电荷快速复合和氯化物腐蚀等挑战。本研究通过镍基沸石咪唑盐框架(Ni-ZIF)在阳极氧化的TiO2纳米管阵列(TNTAs)上的溶剂热集成,构建了p-n异质结复合光阳极(Ni-ZIF/TNTAs),解决了这些问题。Ni-ZIF(带隙为2.23 eV)和TNTAs之间的协同作用将复合带隙缩小到2.72 eV,将光吸收扩展到450 nm。优化后的Ni-ZIF/TNTAs (NT-0.01)在模拟海水(3.5 wt% NaCl)中,在1.23 V条件下的光电流密度为2.2 mA/cm²,比原始TNTAs (0.44 mA/cm²)高5倍,析氢率为117.5µmol/cm²。Mott-Schottky和UV-vis分析证实,在p-n结界面处存在内置电场,促进电荷分离,并在365 nm处将入射光子电流效率(IPCE)提高一倍,达到30%。值得注意的是,复合材料在四个循环中保持了96%的产氢率,这归功于动态形成的表面NiOOH层抑制了氯化物的渗透,同时保持了87%的析氧反应(OER)选择性。这项工作开创了Ni-ZIF/TiO2异质结在海水分裂中的应用,为减少太阳能驱动制氢对淡水的依赖提供了一种可扩展的策略。该设计融合了可见光收集、耐腐蚀和高效电荷传输,推进了可持续能源解决方案。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信