{"title":"Evaluation of Wildland Fire Detection Methods Using Expert Input","authors":"Johan Björck, Margaret McNamee","doi":"10.1007/s10694-024-01696-5","DOIUrl":null,"url":null,"abstract":"<div><p>Recently the Intergovernmental Panel on Climate Change released their 6th Assessment reports which confirm that the impact of climate change is visible, e.g. through an increased weather volatility leading both to hotter drier weather and increased flooding in some regions globally. One clear example of this is the increased prevalence of wildfires in recent years and increasing wildfire potential in the future in some regions. Sweden is in the northern most part of Europe and has the highest forest density in the European Union. In total, nearly 17 percent of all forests in Europe are located in Sweden. Even in a global sense, Sweden has extensive forestry, and provides 10 percent of the sawn timber, pulp and paper that is traded on the global market. Given these preconditions, in 2020 the Swedish Civil Contingencies Agency (MSB) identified the need to investigate the conditions for current and possible future detection methods for wildfires in Sweden. An overview of common current methods was made and review of these methods was conducted through interviews with national experts. The expert evaluation indicated an opportunity to build wildfire detection in Sweden based on weather radar, radar/satellite combinations, and/or airborne radar. The development of such detection systems could repurpose existing infrastructure and reduce the overall investment needs, implying that Sweden could adopt such methods rapidly provided there is sufficient political will. The methodology shows the advantage of using expert input to identify appropriate technical measures for further research investments given limited resources.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"61 4","pages":"2547 - 2569"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-024-01696-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01696-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently the Intergovernmental Panel on Climate Change released their 6th Assessment reports which confirm that the impact of climate change is visible, e.g. through an increased weather volatility leading both to hotter drier weather and increased flooding in some regions globally. One clear example of this is the increased prevalence of wildfires in recent years and increasing wildfire potential in the future in some regions. Sweden is in the northern most part of Europe and has the highest forest density in the European Union. In total, nearly 17 percent of all forests in Europe are located in Sweden. Even in a global sense, Sweden has extensive forestry, and provides 10 percent of the sawn timber, pulp and paper that is traded on the global market. Given these preconditions, in 2020 the Swedish Civil Contingencies Agency (MSB) identified the need to investigate the conditions for current and possible future detection methods for wildfires in Sweden. An overview of common current methods was made and review of these methods was conducted through interviews with national experts. The expert evaluation indicated an opportunity to build wildfire detection in Sweden based on weather radar, radar/satellite combinations, and/or airborne radar. The development of such detection systems could repurpose existing infrastructure and reduce the overall investment needs, implying that Sweden could adopt such methods rapidly provided there is sufficient political will. The methodology shows the advantage of using expert input to identify appropriate technical measures for further research investments given limited resources.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.