Zhi Zheng
(, ), Mingkun Zhang
(, ), Qing Yang
(, ), Mian Long
(, ), Shouqin Lü
(, )
{"title":"Unraveling the formation and stabilization of vesicle penetration pore by molecular dynamics simulations","authors":"Zhi Zheng \n (, ), Mingkun Zhang \n (, ), Qing Yang \n (, ), Mian Long \n (, ), Shouqin Lü \n (, )","doi":"10.1007/s10409-025-25419-x","DOIUrl":null,"url":null,"abstract":"<div><p>The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance, since such the structures extensively exist in living body with various functions. However, the related formation dynamics is unclear because of the limitation of experimental techniques. This work developed a new model of intra-vesicular fusion to elaborate the formation and stabilization of penetration pores by employing molecular dynamics simulations, based on simplified spherical lipid vesicle system, and investigated the regulation of membrane lipid composition. Results showed that penetration pore could be successfully formed based on the strategy of membrane fusion. The ease of intra-vesicular fusion and penetration pore formation was closely correlated with the lipid curvature properties, where negative spontaneous curvature of lipids seemed to be unfavorable for intra-vesicle fusion. Furthermore, the inner membrane tension around the pore was much larger than other regions, which governed the penetration pore size and stability. This work provided basic understanding for vesicle penetration pore formation and stabilization mechanisms.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-025-25419-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of donut-shaped penetration pore upon membrane fusion in a closed lipid membrane system is of biological significance, since such the structures extensively exist in living body with various functions. However, the related formation dynamics is unclear because of the limitation of experimental techniques. This work developed a new model of intra-vesicular fusion to elaborate the formation and stabilization of penetration pores by employing molecular dynamics simulations, based on simplified spherical lipid vesicle system, and investigated the regulation of membrane lipid composition. Results showed that penetration pore could be successfully formed based on the strategy of membrane fusion. The ease of intra-vesicular fusion and penetration pore formation was closely correlated with the lipid curvature properties, where negative spontaneous curvature of lipids seemed to be unfavorable for intra-vesicle fusion. Furthermore, the inner membrane tension around the pore was much larger than other regions, which governed the penetration pore size and stability. This work provided basic understanding for vesicle penetration pore formation and stabilization mechanisms.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics