Mixed ionic/electronic conducting framework enabled by transition metal-ion reduction in Li-LLTO composite anodes for ultrafast lithium diffusion

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huilin Zhu  (, ), Shiwei Deng  (, ), Xinyi Kong  (, ), Xing Xiang  (, ), Yan Duan  (, ), Jian-Fang Wu  (, ), Jilei Liu  (, )
{"title":"Mixed ionic/electronic conducting framework enabled by transition metal-ion reduction in Li-LLTO composite anodes for ultrafast lithium diffusion","authors":"Huilin Zhu \n (,&nbsp;),&nbsp;Shiwei Deng \n (,&nbsp;),&nbsp;Xinyi Kong \n (,&nbsp;),&nbsp;Xing Xiang \n (,&nbsp;),&nbsp;Yan Duan \n (,&nbsp;),&nbsp;Jian-Fang Wu \n (,&nbsp;),&nbsp;Jilei Liu \n (,&nbsp;)","doi":"10.1007/s40843-025-3452-9","DOIUrl":null,"url":null,"abstract":"<div><p>The development of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid electrolytes is challenged by the unstable Li/LLZO interface during lithium stripping and plating processes, which impedes interfacial charge transport and accelerates lithium dendrite growth. Here, a freestanding ultrathin Li-Li<sub>0.3</sub>La<sub>0.5</sub>TiO<sub>3</sub> (LLTO) composite anode with a three-dimensional interconnected mixed ionic/electronic conducting LLTO framework was developed. The mixed ionic/electronic conduction of LLTO arises from the <i>in-situ</i> reduction of transition metal ions (Ti<sup>4+</sup>) by metallic lithium. The Li-LLTO composite anode possesses good affinity toward LLZO solid electrolytes, achieving a low interfacial resistance of 11.7 Ω cm<sup>2</sup>, and a high lithium self-diffusion coefficient reaching 4.5×10<sup>−11</sup> cm<sup>2</sup>/s, about one order of magnitude higher than that of pure lithium anode. These features collectively enhance the Li-LLTO/LLZO interfacial stability, increasing the critical current density fourfold and enabling a 1300-h symmetrical cell cycling life. It delivers high-performance solid-state lithium batteries with an 80% capacity retention after 220 cycles. This advancement not only improves the performance of lithium metal anodes in solid-state batteries but also offers promising insights for next-generation high-energy-density electrochemical energy storage systems.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 8","pages":"2775 - 2782"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3452-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of Li7La3Zr2O12 (LLZO) solid electrolytes is challenged by the unstable Li/LLZO interface during lithium stripping and plating processes, which impedes interfacial charge transport and accelerates lithium dendrite growth. Here, a freestanding ultrathin Li-Li0.3La0.5TiO3 (LLTO) composite anode with a three-dimensional interconnected mixed ionic/electronic conducting LLTO framework was developed. The mixed ionic/electronic conduction of LLTO arises from the in-situ reduction of transition metal ions (Ti4+) by metallic lithium. The Li-LLTO composite anode possesses good affinity toward LLZO solid electrolytes, achieving a low interfacial resistance of 11.7 Ω cm2, and a high lithium self-diffusion coefficient reaching 4.5×10−11 cm2/s, about one order of magnitude higher than that of pure lithium anode. These features collectively enhance the Li-LLTO/LLZO interfacial stability, increasing the critical current density fourfold and enabling a 1300-h symmetrical cell cycling life. It delivers high-performance solid-state lithium batteries with an 80% capacity retention after 220 cycles. This advancement not only improves the performance of lithium metal anodes in solid-state batteries but also offers promising insights for next-generation high-energy-density electrochemical energy storage systems.

在Li-LLTO复合阳极中通过过渡金属离子还原实现锂离子超快扩散的混合离子/电子导电框架
Li7La3Zr2O12 (LLZO)固体电解质的发展受到锂剥离和镀锂过程中Li/LLZO界面不稳定的挑战,阻碍了界面电荷传输,加速了锂枝晶的生长。本文研制了一种具有三维互联混合离子/电子导电LLTO框架的独立式超薄Li-Li0.3La0.5TiO3 (LLTO)复合阳极。金属锂对过渡金属离子(Ti4+)的原位还原引起了LLTO的混合离子/电子传导。Li-LLTO复合阳极对LLZO固体电解质具有良好的亲和性,界面电阻低至11.7 Ω cm2,锂自扩散系数高,达到4.5×10−11 cm2/s,比纯锂阳极高约一个数量级。这些特性共同增强了Li-LLTO/LLZO界面的稳定性,将临界电流密度提高了四倍,并实现了1300小时的对称电池循环寿命。它提供高性能固态锂电池,在220次循环后容量保持80%。这一进展不仅提高了固态电池中锂金属阳极的性能,而且为下一代高能量密度电化学储能系统提供了有希望的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信