Young Hoon Song, Hye Ryoung Heo, Ae Sol Lee, Chang Sup Kim, Jeong Hyun Seo
{"title":"Cytotoxic Effects of Particulate Matter on Cell Growth and Metabolism of Green Fluorescent Protein-Expressing Escherichia coli","authors":"Young Hoon Song, Hye Ryoung Heo, Ae Sol Lee, Chang Sup Kim, Jeong Hyun Seo","doi":"10.1007/s11814-025-00457-6","DOIUrl":null,"url":null,"abstract":"<div><p>The toxicity of sulfate (SO<sub>4</sub><sup>−2</sup>) and ammonium (NH<sub>4</sub><sup>+</sup>), key components of fine dust, on living organisms was investigated using recombinant green fluorescent protein (GFP)-expressing <i>Escherichia coli</i> as a bioindicator. The effects of individual and mixed particulate matter (PM) compounds, including CuSO₄, (NH₄)₂SO₄, and NH₄Cl, were evaluated by measuring the optical density and GFP fluorescence intensity. <i>Escherichia coli</i> growth was inhibited by the individual compounds at specific thresholds, with CuSO₄ being most toxic at as low as 3.8 mM. Synergistic effects were observed with mixed compounds, markedly reducing growth and fluorescence even at lower concentrations. Notably, a mixture of the three at their sub-lethal individual concentrations completely halted bacterial growth after 2 h of incubation. CuSO₄ was a more potent inhibitor than (NH₄)₂SO₄ and NH₄Cl. These findings highlighted the importance of analyzing the individual and synergistic effects of PM components.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 9","pages":"2123 - 2129"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-025-00457-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The toxicity of sulfate (SO4−2) and ammonium (NH4+), key components of fine dust, on living organisms was investigated using recombinant green fluorescent protein (GFP)-expressing Escherichia coli as a bioindicator. The effects of individual and mixed particulate matter (PM) compounds, including CuSO₄, (NH₄)₂SO₄, and NH₄Cl, were evaluated by measuring the optical density and GFP fluorescence intensity. Escherichia coli growth was inhibited by the individual compounds at specific thresholds, with CuSO₄ being most toxic at as low as 3.8 mM. Synergistic effects were observed with mixed compounds, markedly reducing growth and fluorescence even at lower concentrations. Notably, a mixture of the three at their sub-lethal individual concentrations completely halted bacterial growth after 2 h of incubation. CuSO₄ was a more potent inhibitor than (NH₄)₂SO₄ and NH₄Cl. These findings highlighted the importance of analyzing the individual and synergistic effects of PM components.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.