Synergistic LiBO2/CeF3 hybrid coating engineering for chemically stabilized cathode–electrolyte interphase in nickel-rich cathodes

IF 11 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xin-Kang Li, Li-Jun Xiong, Bai-Yao Gan, Hao-Tian Gong, Yin Ma, Li-Xiong Bai, Jian Zhu, Chun-Xian Zhou, Jiang Yin, Xiang-Ping Chen, Li-Shan Yang
{"title":"Synergistic LiBO2/CeF3 hybrid coating engineering for chemically stabilized cathode–electrolyte interphase in nickel-rich cathodes","authors":"Xin-Kang Li,&nbsp;Li-Jun Xiong,&nbsp;Bai-Yao Gan,&nbsp;Hao-Tian Gong,&nbsp;Yin Ma,&nbsp;Li-Xiong Bai,&nbsp;Jian Zhu,&nbsp;Chun-Xian Zhou,&nbsp;Jiang Yin,&nbsp;Xiang-Ping Chen,&nbsp;Li-Shan Yang","doi":"10.1007/s12598-025-03403-x","DOIUrl":null,"url":null,"abstract":"<div><p>Nickel-rich LiNi<sub><i>x</i></sub>Co<sub><i>y</i></sub>Mn<sub>1−<i>x</i>−<i>y</i></sub>O<sub>2</sub> (NCM) cathodes, pivotal for high-energy–density lithium-ion batteries, face severe challenges from surface residual lithium compounds and hydrofluoric acid (HF)-induced degradation. These issues accelerate capacity fading, exacerbate interfacial polarization, and compromise safety. To address these issues, we proposed a scalable CeF<sub>3</sub>/H<sub>3</sub>BO<sub>3</sub> hybrid coating strategy for LiNi<sub>0.82</sub>Co<sub>0.12</sub>Mn<sub>0.06</sub>O<sub>2</sub> cathodes. The CeF<sub>3</sub> nanoparticles served as a robust physical barrier, effectively scavenging HF, while the LiBO<sub>2</sub> layer derived from H<sub>3</sub>BO<sub>3</sub> eliminated residual Li<sub>2</sub>CO<sub>3</sub> through chemical conversion and established rapid Li<sup>+</sup> transport pathways. Dynamic B-O bond reorganization enabled self-repair of coating defects, synergistically suppressing interfacial polarization and maintaining structural integrity. Electrochemical evaluations demonstrated that the hybrid-coated cathode achieves 94% capacity retention after 200 cycles at 1C (2.8–4.3 V), significantly outperforming the pristine NCM (56.3%). Additionally, the modified cathode exhibits enhanced air stability, with suppressed H<sub>2</sub>O/CO<sub>2</sub> infiltration, and delivers 80% capacity retention after 1000 cycles in practical pouch cells. This work provides a cost-effective and industrially viable solution to simultaneously mitigate HF corrosion, residual lithium accumulation, and cathode–electrolyte interphase instability, paving the way for durable high-energy–density batteries.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 10","pages":"7254 - 7266"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-025-03403-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-rich LiNixCoyMn1−xyO2 (NCM) cathodes, pivotal for high-energy–density lithium-ion batteries, face severe challenges from surface residual lithium compounds and hydrofluoric acid (HF)-induced degradation. These issues accelerate capacity fading, exacerbate interfacial polarization, and compromise safety. To address these issues, we proposed a scalable CeF3/H3BO3 hybrid coating strategy for LiNi0.82Co0.12Mn0.06O2 cathodes. The CeF3 nanoparticles served as a robust physical barrier, effectively scavenging HF, while the LiBO2 layer derived from H3BO3 eliminated residual Li2CO3 through chemical conversion and established rapid Li+ transport pathways. Dynamic B-O bond reorganization enabled self-repair of coating defects, synergistically suppressing interfacial polarization and maintaining structural integrity. Electrochemical evaluations demonstrated that the hybrid-coated cathode achieves 94% capacity retention after 200 cycles at 1C (2.8–4.3 V), significantly outperforming the pristine NCM (56.3%). Additionally, the modified cathode exhibits enhanced air stability, with suppressed H2O/CO2 infiltration, and delivers 80% capacity retention after 1000 cycles in practical pouch cells. This work provides a cost-effective and industrially viable solution to simultaneously mitigate HF corrosion, residual lithium accumulation, and cathode–electrolyte interphase instability, paving the way for durable high-energy–density batteries.

Graphical abstract

富镍阴极中化学稳定阴极-电解质界面的协同LiBO2/CeF3复合涂层工程
作为高能量密度锂离子电池的关键材料,富镍LiNixCoyMn1 - x - yO2 (NCM)阴极面临着来自表面残留锂化合物和氢氟酸(HF)诱导降解的严峻挑战。这些问题加速了容量衰退,加剧了接口极化,并危及安全性。为了解决这些问题,我们提出了一种可扩展的CeF3/H3BO3混合涂层策略,用于lini0.82 co0.12 mn0.060 o2阴极。CeF3纳米颗粒作为一个强大的物理屏障,有效地清除HF,而由H3BO3衍生的LiBO2层通过化学转化消除了残留的Li2CO3,并建立了快速的Li+运输途径。动态B-O键重组使涂层缺陷自我修复,协同抑制界面极化,保持结构完整性。电化学评估表明,在1C (2.8-4.3 V)下循环200次后,混合涂层阴极的容量保持率达到94%,明显优于原始NCM(56.3%)。此外,改性阴极表现出增强的空气稳定性,抑制H2O/CO2渗透,并在实际袋式电池中循环1000次后提供80%的容量保留。这项工作提供了一种具有成本效益和工业可行性的解决方案,可以同时减轻HF腐蚀、残余锂积累和阴极-电解质界面不稳定,为耐用的高能量密度电池铺平道路。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信