Liang Li, Pan Zhou, Shanghui Yang, Yi Liu, Ben He, Mingdong Wei
{"title":"Offshore pile penetration response in soft clays: a semi-analytical solution using the combined expansion-shearing method (CESM)","authors":"Liang Li, Pan Zhou, Shanghui Yang, Yi Liu, Ben He, Mingdong Wei","doi":"10.1007/s11440-025-02602-1","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately predicting pile penetration in marine soft clays is crucial for effective construction, load-bearing design, and maintenance of offshore pile foundations. A semi-analytical solution employing the combined expansion-shearing method (CESM) is introduced to model pile penetration in soft clays. This method innovatively simplifies the Pile penetration into undrained cavity expansion and vertical shearing. Using the S-CLAY1S model, which incorporates the anisotropy and structure of natural soft clays, an exact semi-analytical solution was developed to describe soil behavior around the pile under undrained vertical shearing, expanding upon existing undrained cavity expansion solutions. The accuracy and innovation of the CESM were validated through the results of field tests and finite element simulations. Additionally, a comprehensive parametric study highlighted the significant impact of soil’s initial structure and stress state on pile penetration response. The study findings strongly align with theoretical calculations, field Measurements, and numerical simulations. Compared to the conventional cavity expansion method, CESM excels in resolving soil stresses at the pile shaft, albeit with a slight limitation in evaluating excess pore water pressure of soils at the pile shaft. The proposed solution considers the fundamental properties of soft clays, including their anisotropy and structural behavior, while incorporating the vertical shearing experienced by the soil during pile installation, thereby providing a simplified yet precise theoretical framework for addressing pile penetration challenges.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 7","pages":"3177 - 3200"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-025-02602-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-025-02602-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting pile penetration in marine soft clays is crucial for effective construction, load-bearing design, and maintenance of offshore pile foundations. A semi-analytical solution employing the combined expansion-shearing method (CESM) is introduced to model pile penetration in soft clays. This method innovatively simplifies the Pile penetration into undrained cavity expansion and vertical shearing. Using the S-CLAY1S model, which incorporates the anisotropy and structure of natural soft clays, an exact semi-analytical solution was developed to describe soil behavior around the pile under undrained vertical shearing, expanding upon existing undrained cavity expansion solutions. The accuracy and innovation of the CESM were validated through the results of field tests and finite element simulations. Additionally, a comprehensive parametric study highlighted the significant impact of soil’s initial structure and stress state on pile penetration response. The study findings strongly align with theoretical calculations, field Measurements, and numerical simulations. Compared to the conventional cavity expansion method, CESM excels in resolving soil stresses at the pile shaft, albeit with a slight limitation in evaluating excess pore water pressure of soils at the pile shaft. The proposed solution considers the fundamental properties of soft clays, including their anisotropy and structural behavior, while incorporating the vertical shearing experienced by the soil during pile installation, thereby providing a simplified yet precise theoretical framework for addressing pile penetration challenges.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.