Optimization techniques in digital microfluidic biochips: a survey of sample preparation algorithmic solutions and challenges

IF 2.5 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Nirmala Natarajan, Gracia Nirmala Rani Duraisamy
{"title":"Optimization techniques in digital microfluidic biochips: a survey of sample preparation algorithmic solutions and challenges","authors":"Nirmala Natarajan,&nbsp;Gracia Nirmala Rani Duraisamy","doi":"10.1007/s10404-025-02829-0","DOIUrl":null,"url":null,"abstract":"<div><p>Digital Micro Fluidic Biochips (DMFBs) are a revolutionary way to automate biochemical processes which are accurate, handy, and multifunctional. However, limitations in droplet manipulation, resource allocation, and assay execution continue to serve as considerable obstacles to effective sample preparation. Using electrical actuation techniques, these biochips accurately automate fluid sample analysis, simplifying essential laboratory tasks including cleaning, mixing, separating, and merging. Solutions with a predetermined target volume can be generated due to this technique. This process consists of combining various solutions of chemicals in a specified volume ratio by carrying out a different procedure. By using these methods, DMFBs can perform tests with little use of sample or reagent, opening up possibilities for use in drug research, gene sequencing, DNA analysis, medical diagnostics, and other fields. An extensive overview of optimization methods used for sample preparation in DMFBs is given in this paper, with an emphasis on algorithmic solutions that improve scheduling, dilution, and mixing. We categorize and evaluate current methods according to their computational methodologies and trade-offs between performance and adaptation to various biochip layouts. We also look at important issues, including real-time reconfiguration and waste droplet management. Lastly, we explore future research prospects in developing digital microfluidic biochip technologies and emphasize the suggested sample preparation scheduling method. The purpose of this survey is to assist researchers in creating DMFB sample preparation techniques that are more dependable and effective.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-025-02829-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Digital Micro Fluidic Biochips (DMFBs) are a revolutionary way to automate biochemical processes which are accurate, handy, and multifunctional. However, limitations in droplet manipulation, resource allocation, and assay execution continue to serve as considerable obstacles to effective sample preparation. Using electrical actuation techniques, these biochips accurately automate fluid sample analysis, simplifying essential laboratory tasks including cleaning, mixing, separating, and merging. Solutions with a predetermined target volume can be generated due to this technique. This process consists of combining various solutions of chemicals in a specified volume ratio by carrying out a different procedure. By using these methods, DMFBs can perform tests with little use of sample or reagent, opening up possibilities for use in drug research, gene sequencing, DNA analysis, medical diagnostics, and other fields. An extensive overview of optimization methods used for sample preparation in DMFBs is given in this paper, with an emphasis on algorithmic solutions that improve scheduling, dilution, and mixing. We categorize and evaluate current methods according to their computational methodologies and trade-offs between performance and adaptation to various biochip layouts. We also look at important issues, including real-time reconfiguration and waste droplet management. Lastly, we explore future research prospects in developing digital microfluidic biochip technologies and emphasize the suggested sample preparation scheduling method. The purpose of this survey is to assist researchers in creating DMFB sample preparation techniques that are more dependable and effective.

Abstract Image

数字微流控生物芯片的优化技术:样品制备算法解决方案和挑战的综述
数字微流体生物芯片(dmfb)是一种革命性的方法,自动化生化过程是准确的,方便的,多功能的。然而,在液滴操作、资源分配和分析执行方面的限制仍然是有效样品制备的相当大的障碍。使用电动驱动技术,这些生物芯片精确地自动化流体样品分析,简化基本的实验室任务,包括清洁,混合,分离和合并。由于这种技术,可以生成具有预定目标体积的解决方案。这个过程包括通过执行不同的程序将不同的化学溶液按特定的体积比组合起来。通过使用这些方法,dmfb可以在很少使用样品或试剂的情况下进行测试,从而为药物研究、基因测序、DNA分析、医学诊断和其他领域的应用开辟了可能性。本文对DMFBs中用于样品制备的优化方法进行了广泛的概述,重点是改进调度,稀释和混合的算法解决方案。我们根据其计算方法和性能与适应各种生物芯片布局之间的权衡对当前方法进行分类和评估。我们还关注一些重要问题,包括实时重新配置和废物液滴管理。最后,展望了数字微流控生物芯片技术的发展前景,重点介绍了建议的样品制备调度方法。本调查的目的是帮助研究人员创建更可靠和有效的DMFB样品制备技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信