Choquet extension of non-monotone submodular setfunctions

IF 0.6 3区 数学 Q3 MATHEMATICS
L. Lovász
{"title":"Choquet extension of non-monotone submodular setfunctions","authors":"L. Lovász","doi":"10.1007/s10474-025-01529-z","DOIUrl":null,"url":null,"abstract":"<div><p> In a seminal paper, Choquet introduced an integral formula to\nextend a monotone increasing setfunction on a sigma-algebra to a (nonlinear) functional\non bounded measurable functions. The most important special case is when\nthe setfunction is submodular; then this functional is convex (and vice versa). In\nthe finite case, an analogous extension was introduced by this author; this is a\nrather special case, but no monotonicity was assumed. In this note we show that\nChoquet's integral formula can be applied to all submodular setfunctions, and\nthe resulting functional is still convex. We extend the construction to submodular\nsetfunctions defined on a set-algebra (rather than a sigma-algebra). The main\nproperty of submodular setfunctions used in the proof is that they have bounded\nvariation. As a generalization of the convexity of the extension, we show that\n(under smoothness conditions) a \"lopsided\" version of Fubini's Theorem holds.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"1 - 14"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-025-01529-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01529-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a seminal paper, Choquet introduced an integral formula to extend a monotone increasing setfunction on a sigma-algebra to a (nonlinear) functional on bounded measurable functions. The most important special case is when the setfunction is submodular; then this functional is convex (and vice versa). In the finite case, an analogous extension was introduced by this author; this is a rather special case, but no monotonicity was assumed. In this note we show that Choquet's integral formula can be applied to all submodular setfunctions, and the resulting functional is still convex. We extend the construction to submodular setfunctions defined on a set-algebra (rather than a sigma-algebra). The main property of submodular setfunctions used in the proof is that they have bounded variation. As a generalization of the convexity of the extension, we show that (under smoothness conditions) a "lopsided" version of Fubini's Theorem holds.

非单调子模集函数的Choquet扩展
在一篇开创性的论文中,Choquet引入了一个积分公式,将sigma代数上的单调递增集函数推广到有界可测函数上的(非线性)函数。最重要的特殊情况是set函数是子模的;那么这个函数就是凸函数(反之亦然)。在有限情况下,作者引入了一个类似的推广;这是一个相当特殊的情况,但没有假设单调性。在这篇笔记中,我们证明了choquet的积分公式可以应用于所有的次模集合函数,并且得到的泛函仍然是凸的。我们将这种构造扩展到定义在集合代数(而不是sigma代数)上的子模块函数。证明中使用的次模集函数的主要性质是它们具有有界变分。作为扩展的凸性的推广,我们证明了(在平滑条件下)一个“不平衡”版本的富比尼定理成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信