Optimizing naphtha blending at Al-Diwaniyah refinery for enhanced gasoline production: improving octane number and minimizing sulfur content

IF 2.5 4区 化学 Q2 Engineering
Ahmed Qasim, Hameed Hussein Alwan, Nazar Qasim, Jasim I. Humadi, Shahd Ammar Hatem
{"title":"Optimizing naphtha blending at Al-Diwaniyah refinery for enhanced gasoline production: improving octane number and minimizing sulfur content","authors":"Ahmed Qasim,&nbsp;Hameed Hussein Alwan,&nbsp;Nazar Qasim,&nbsp;Jasim I. Humadi,&nbsp;Shahd Ammar Hatem","doi":"10.1007/s11696-025-04141-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Al-Diwaniyah refinery conducts this study to investigate the effects of blending light and heavy naphtha on the octane number and sulfur content of mixed naphtha, a critical intermediate in gasoline production. Using the Box–Behnken design in Minitab, the study carefully looks at how operational variables like top temperature (110–125 °C), flow rate (1–4 m<sup>3</sup>/hr.), and pressure (0.6–1 bar-g) affect the quality of the fuel. Minitab was used for accurate statistical modeling, which showed that the best conditions for blending produce an octane number of 51.43 and a sulfur content of 343.66 ppm. These conditions are equivalent to a heavy naphtha flow rate of 1 m<sup>3</sup>/hr, a top temperature of 110 °C, and a pressure of 0.6 bar-g, which improves engine performance and lowers the impact on the environment. To validate these findings, the blending process was simulated using Aspen Hysys, a powerful tool for process modeling in the petroleum industry. The simulation results aligned with the actual data, and a comprehensive relative error analysis revealed slight variances in octane numbers and more significant variations in sulfur content. This analysis underscores the simulation’s reliability in forecasting octane numbers while pinpointing opportunities for enhancement in sulfur content prediction.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 8","pages":"5497 - 5515"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-025-04141-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The Al-Diwaniyah refinery conducts this study to investigate the effects of blending light and heavy naphtha on the octane number and sulfur content of mixed naphtha, a critical intermediate in gasoline production. Using the Box–Behnken design in Minitab, the study carefully looks at how operational variables like top temperature (110–125 °C), flow rate (1–4 m3/hr.), and pressure (0.6–1 bar-g) affect the quality of the fuel. Minitab was used for accurate statistical modeling, which showed that the best conditions for blending produce an octane number of 51.43 and a sulfur content of 343.66 ppm. These conditions are equivalent to a heavy naphtha flow rate of 1 m3/hr, a top temperature of 110 °C, and a pressure of 0.6 bar-g, which improves engine performance and lowers the impact on the environment. To validate these findings, the blending process was simulated using Aspen Hysys, a powerful tool for process modeling in the petroleum industry. The simulation results aligned with the actual data, and a comprehensive relative error analysis revealed slight variances in octane numbers and more significant variations in sulfur content. This analysis underscores the simulation’s reliability in forecasting octane numbers while pinpointing opportunities for enhancement in sulfur content prediction.

优化Al-Diwaniyah炼油厂的石脑油混合以提高汽油产量:提高辛烷值并尽量减少硫含量
Al-Diwaniyah炼油厂进行了这项研究,以调查混合轻质和重质石脑油对混合石脑油辛烷值和硫含量的影响,混合石脑油是汽油生产中的关键中间体。使用Minitab的Box-Behnken设计,该研究仔细研究了操作变量,如最高温度(110-125°C)、流量(1-4 m3/hr)和压力(0.6-1 bar-g)如何影响燃料质量。利用Minitab进行了精确的统计建模,结果表明,混合的最佳条件为辛烷值为51.43,硫含量为343.66 ppm。这些条件相当于重质石脑油的流量为1m3 /hr,最高温度为110°C,压力为0.6 bar-g,从而提高了发动机的性能并降低了对环境的影响。为了验证这些发现,使用Aspen Hysys(一个强大的石油工业过程建模工具)对混合过程进行了模拟。模拟结果与实际数据一致,综合相对误差分析显示辛烷值略有差异,而硫含量变化更为显著。这一分析强调了模拟在预测辛烷值方面的可靠性,同时指出了提高硫含量预测的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信